2012, 6(4): 539-561. doi: 10.3934/jmd.2012.6.539

Quadratic irrationals and linking numbers of modular knots

1. 

Boston College, Department of Mathematics, Chestnut Hill, MA 02467, United States

Received  June 2012 Published  January 2013

A closed geodesic on the modular surface gives rise to a knot on the 3-sphere with a trefoil knot removed, and one can compute the linking number of such a knot with the trefoil knot. We show that, when ordered by their length, the set of closed geodesics having a prescribed linking number become equidistributed on average with respect to the Liouville measure. We show this by using the thermodynamic formalism to prove an equidistribution result for a corresponding set of quadratic irrationals on the unit interval.
Citation: Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots. Journal of Modern Dynamics, 2012, 6 (4) : 539-561. doi: 10.3934/jmd.2012.6.539
References:
[1]

E. Artin, Ein mechanisches System mit quasiergodischen Bahnen,, Hamb. Math. Abh., 3 (1924), 170.

[2]

W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms,, Invent. Math., 92 (1988), 73. doi: 10.1007/BF01393993.

[3]

I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$,, Invent. Math., 114 (1993), 207. doi: 10.1007/BF01232667.

[4]

É. Ghys, Knots and dynamics,, in, (2007), 247. doi: 10.4171/022-1/11.

[5]

D. A. Hejhal, "The Selberg Trace Formula for $PSL(2, \mathbf R)$," Vol. 2,, Lecture Notes in Mathematics, (1001).

[6]

T. Kato, "A Short Introduction to Perturbation Theory for Linear Operators,", Springer-Verlag, (1982).

[7]

J. Korevaar, "Tauberian Theory. A Century of Developments,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2004).

[8]

A. Katsuda and T. Sunada, Closed orbits in homology classes,, Inst. Hautes Études Sci. Publ. Math., (1990), 5.

[9]

S. P. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature,, Duke Math. J., 58 (1989), 795. doi: 10.1215/S0012-7094-89-05837-7.

[10]

D. H. Mayer, On a $\zeta$ function related to the continued fraction transformation,, Bull. Soc. Math. France, 104 (1976), 195.

[11]

_____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$,, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55. doi: 10.1090/S0273-0979-1991-16023-4.

[12]

C. J. Mozzochi, Linking numbers of modular geodesics,, preprint, (2010).

[13]

M. Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals,, Bull. Soc. Math. France, 114 (1986), 431.

[14]

_____, Homology and closed geodesics in a compact negatively curved surface,, Amer. J. Math., 113 (1991), 379. doi: 10.2307/2374830.

[15]

R. Phillips and P. Sarnak, Geodesics in homology classes,, Duke Math. J., 55 (1987), 287. doi: 10.1215/S0012-7094-87-05515-3.

[16]

H. Rademacher and E. Grosswald, "Dedekind Sums,", The Carus Mathematical Monographs, (1972).

[17]

P. Sarnak, Class numbers of indefinite binary quadratic forms,, J. Number Theory, 15 (1982), 229. doi: 10.1016/0022-314X(82)90028-2.

[18]

_____, Reciprocal geodesics,, in, 7 (2007), 217.

[19]

_____, Linking numbers of modular knots,, Commun. Math. Anal., 8 (2010), 136.

[20]

C. Series, The modular surface and continued fractions,, J. London Math. Soc. (2), 31 (1985), 69. doi: 10.1112/jlms/s2-31.1.69.

[21]

S. Zelditch, Trace formula for compact $\Gamma\backslash PSL_2(\mathbf R)$ and the equidistribution theory of closed geodesics,, Duke Math. J., 59 (1989), 27. doi: 10.1215/S0012-7094-89-05902-4.

show all references

References:
[1]

E. Artin, Ein mechanisches System mit quasiergodischen Bahnen,, Hamb. Math. Abh., 3 (1924), 170.

[2]

W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms,, Invent. Math., 92 (1988), 73. doi: 10.1007/BF01393993.

[3]

I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$,, Invent. Math., 114 (1993), 207. doi: 10.1007/BF01232667.

[4]

É. Ghys, Knots and dynamics,, in, (2007), 247. doi: 10.4171/022-1/11.

[5]

D. A. Hejhal, "The Selberg Trace Formula for $PSL(2, \mathbf R)$," Vol. 2,, Lecture Notes in Mathematics, (1001).

[6]

T. Kato, "A Short Introduction to Perturbation Theory for Linear Operators,", Springer-Verlag, (1982).

[7]

J. Korevaar, "Tauberian Theory. A Century of Developments,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2004).

[8]

A. Katsuda and T. Sunada, Closed orbits in homology classes,, Inst. Hautes Études Sci. Publ. Math., (1990), 5.

[9]

S. P. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature,, Duke Math. J., 58 (1989), 795. doi: 10.1215/S0012-7094-89-05837-7.

[10]

D. H. Mayer, On a $\zeta$ function related to the continued fraction transformation,, Bull. Soc. Math. France, 104 (1976), 195.

[11]

_____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$,, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55. doi: 10.1090/S0273-0979-1991-16023-4.

[12]

C. J. Mozzochi, Linking numbers of modular geodesics,, preprint, (2010).

[13]

M. Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals,, Bull. Soc. Math. France, 114 (1986), 431.

[14]

_____, Homology and closed geodesics in a compact negatively curved surface,, Amer. J. Math., 113 (1991), 379. doi: 10.2307/2374830.

[15]

R. Phillips and P. Sarnak, Geodesics in homology classes,, Duke Math. J., 55 (1987), 287. doi: 10.1215/S0012-7094-87-05515-3.

[16]

H. Rademacher and E. Grosswald, "Dedekind Sums,", The Carus Mathematical Monographs, (1972).

[17]

P. Sarnak, Class numbers of indefinite binary quadratic forms,, J. Number Theory, 15 (1982), 229. doi: 10.1016/0022-314X(82)90028-2.

[18]

_____, Reciprocal geodesics,, in, 7 (2007), 217.

[19]

_____, Linking numbers of modular knots,, Commun. Math. Anal., 8 (2010), 136.

[20]

C. Series, The modular surface and continued fractions,, J. London Math. Soc. (2), 31 (1985), 69. doi: 10.1112/jlms/s2-31.1.69.

[21]

S. Zelditch, Trace formula for compact $\Gamma\backslash PSL_2(\mathbf R)$ and the equidistribution theory of closed geodesics,, Duke Math. J., 59 (1989), 27. doi: 10.1215/S0012-7094-89-05902-4.

[1]

Wenzhi Luo, Zeév Rudnick, Peter Sarnak. The variance of arithmetic measures associated to closed geodesics on the modular surface. Journal of Modern Dynamics, 2009, 3 (2) : 271-309. doi: 10.3934/jmd.2009.3.271

[2]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

[3]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[4]

Feng Luo. On non-separating simple closed curves in a compact surface. Electronic Research Announcements, 1995, 1: 18-25.

[5]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[6]

Bennett Palmer. Stable closed equilibria for anisotropic surface energies: Surfaces with edges. Journal of Geometric Mechanics, 2012, 4 (1) : 89-97. doi: 10.3934/jgm.2012.4.89

[7]

Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165

[8]

Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129

[9]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[10]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[11]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[12]

Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009

[13]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[14]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[15]

Igor E. Shparlinski. Close values of shifted modular inversions and the decisional modular inversion hidden number problem. Advances in Mathematics of Communications, 2015, 9 (2) : 169-176. doi: 10.3934/amc.2015.9.169

[16]

M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti. Escaping the trap of 'blocking': A kinetic model linking economic development and political competition. Kinetic & Related Models, 2017, 10 (2) : 423-443. doi: 10.3934/krm.2017016

[17]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[18]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[19]

Salvatore Cosentino, Livio Flaminio. Equidistribution for higher-rank Abelian actions on Heisenberg nilmanifolds. Journal of Modern Dynamics, 2015, 9: 305-353. doi: 10.3934/jmd.2015.9.305

[20]

Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 1-41. doi: 10.3934/dcds.2018001

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]