• Previous Article
    Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities
  • JIMO Home
  • This Issue
  • Next Article
    On the Levenberg-Marquardt methods for convex constrained nonlinear equations
January  2013, 9(1): 243-253. doi: 10.3934/jimo.2013.9.243

An outcome space algorithm for minimizing the product of two convex functions over a convex set

1. 

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, N01 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam, Vietnam, Vietnam

Received  June 2011 Revised  July 2012 Published  December 2012

This paper presents an outcome-space outer approximation algorithm for solving the problem of minimizing the product of two convex functions over a compact convex set in $\mathbb{R}^n$. The computational experiences are reported. The proposed algorithm is convergent.
Citation: Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243
References:
[1]

H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic,, Journal of Optimization Theory and Applications, 94 (1997), 487. doi: 10.1023/A:1022600232285. Google Scholar

[2]

H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming,, Journal of Optimization Theory and Applications, 104 (2000), 301. doi: 10.1023/A:1004657629105. Google Scholar

[3]

H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming,, Journal of Global Optimization, 15 (1999), 315. doi: 10.1023/A:1008316429329. Google Scholar

[4]

Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming,, Applied Mathematics and Computation, 216 (2010), 1206. doi: 10.1016/j.amc.2010.02.012. Google Scholar

[5]

R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization,, Operations Research Letters, 7 (1988), 85. doi: 10.1016/0167-6377(88)90071-5. Google Scholar

[6]

B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization,, Journal of Global Optimization, 10 (1997), 229. doi: 10.1023/A:1008203116882. Google Scholar

[7]

N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron,, Journal Industrial and Management Optimization, 3 (2007), 481. doi: 10.3934/jimo.2007.3.481. Google Scholar

[8]

N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming,, East West Journal of Mathematics, 9 (2007), 81. Google Scholar

[9]

H. Konno and T. Kuno, Linear multiplicative programming,, Mathematical Programming, 56 (1992), 51. doi: 10.1007/BF01580893. Google Scholar

[10]

H. Konno and T. Kuno, Multiplicative programming problems,, Handbook of Global Optimization, (1995), 369. Google Scholar

[11]

D. T. Luc, "Theory of Vector Optimization,", Springer-Verlag, (1989). doi: 10.1007/978-3-642-50280-4. Google Scholar

[12]

T. Matsui, NP-hardness of linear multiplicative programming and related problems,, Journal of Global Optimization, 9 (1996), 113. doi: 10.1007/BF00121658. Google Scholar

[13]

L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set,, Optimization, 24 (1992), 57. doi: 10.1080/02331939208843779. Google Scholar

[14]

H. X. Phu, On efficient sets in $\mathbbR^2$,, Vietnam Journal of Mathematics, 33 (2005), 463. Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970). Google Scholar

[16]

T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications,, Acta Mathematica Hungarica, 52 (1988), 21. doi: 10.1007/BF01952475. Google Scholar

[17]

N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem,, Journal of Global Optimization, 1 (1991), 341. doi: 10.1007/BF00130830. Google Scholar

[18]

P. L. Yu, "Multiple-Criteria Decision Making,", Plenum Press, (1985). doi: 10.1007/978-1-4684-8395-6. Google Scholar

show all references

References:
[1]

H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic,, Journal of Optimization Theory and Applications, 94 (1997), 487. doi: 10.1023/A:1022600232285. Google Scholar

[2]

H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming,, Journal of Optimization Theory and Applications, 104 (2000), 301. doi: 10.1023/A:1004657629105. Google Scholar

[3]

H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming,, Journal of Global Optimization, 15 (1999), 315. doi: 10.1023/A:1008316429329. Google Scholar

[4]

Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming,, Applied Mathematics and Computation, 216 (2010), 1206. doi: 10.1016/j.amc.2010.02.012. Google Scholar

[5]

R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization,, Operations Research Letters, 7 (1988), 85. doi: 10.1016/0167-6377(88)90071-5. Google Scholar

[6]

B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization,, Journal of Global Optimization, 10 (1997), 229. doi: 10.1023/A:1008203116882. Google Scholar

[7]

N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron,, Journal Industrial and Management Optimization, 3 (2007), 481. doi: 10.3934/jimo.2007.3.481. Google Scholar

[8]

N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming,, East West Journal of Mathematics, 9 (2007), 81. Google Scholar

[9]

H. Konno and T. Kuno, Linear multiplicative programming,, Mathematical Programming, 56 (1992), 51. doi: 10.1007/BF01580893. Google Scholar

[10]

H. Konno and T. Kuno, Multiplicative programming problems,, Handbook of Global Optimization, (1995), 369. Google Scholar

[11]

D. T. Luc, "Theory of Vector Optimization,", Springer-Verlag, (1989). doi: 10.1007/978-3-642-50280-4. Google Scholar

[12]

T. Matsui, NP-hardness of linear multiplicative programming and related problems,, Journal of Global Optimization, 9 (1996), 113. doi: 10.1007/BF00121658. Google Scholar

[13]

L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set,, Optimization, 24 (1992), 57. doi: 10.1080/02331939208843779. Google Scholar

[14]

H. X. Phu, On efficient sets in $\mathbbR^2$,, Vietnam Journal of Mathematics, 33 (2005), 463. Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970). Google Scholar

[16]

T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications,, Acta Mathematica Hungarica, 52 (1988), 21. doi: 10.1007/BF01952475. Google Scholar

[17]

N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem,, Journal of Global Optimization, 1 (1991), 341. doi: 10.1007/BF00130830. Google Scholar

[18]

P. L. Yu, "Multiple-Criteria Decision Making,", Plenum Press, (1985). doi: 10.1007/978-1-4684-8395-6. Google Scholar

[1]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[2]

Nguyen Thi Bach Kim. Finite algorithm for minimizing the product of two linear functions over a polyhedron. Journal of Industrial & Management Optimization, 2007, 3 (3) : 481-487. doi: 10.3934/jimo.2007.3.481

[3]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[4]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[5]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[6]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[7]

Michael Hintermüller, Tao Wu. Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Problems & Imaging, 2015, 9 (4) : 1139-1169. doi: 10.3934/ipi.2015.9.1139

[8]

Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1

[9]

Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014

[10]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[11]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[12]

Yuan Shen, Wenxing Zhang, Bingsheng He. Relaxed augmented Lagrangian-based proximal point algorithms for convex optimization with linear constraints. Journal of Industrial & Management Optimization, 2014, 10 (3) : 743-759. doi: 10.3934/jimo.2014.10.743

[13]

Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211

[14]

Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial & Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891

[15]

Songhai Deng, Zhong Wan, Yanjiu Zhou. Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020096

[16]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[17]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[18]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[19]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[20]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]