2012, 6(3): 287-326. doi: 10.3934/jmd.2012.6.287

No planar billiard possesses an open set of quadrilateral trajectories

1. 

CNRS, Unité de Mathématiques Pures et Appliquées, M.R., École Normale Supérieure de Lyon, 46 allée d’Italie, 69364, Lyon 07, France

2. 

National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russian Federation

Received  January 2011 Revised  May 2012 Published  October 2012

The article is devoted to a particular case of Ivriĭ's conjecture on periodic orbits of billiards. The general conjecture states that the set of periodic orbits of the billiard in a domain with smooth boundary in the Euclidean space has measure zero. In this article we prove that for any domain with piecewise $C^4$-smooth boundary in the plane the set of quadrilateral trajectories of the corresponding billiard has measure zero.
Citation: Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287
References:
[1]

A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction,, Nonlinearity, 22 (2009), 1247. doi: 10.1088/0951-7715/22/6/001.

[2]

V. I. Avakumovi ć, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten,, Math. Z., 65 (1956), 327. doi: 10.1007/BF01473886.

[3]

V. Babich and B. Levitan, The focussing problem and the asymptotics of the spectral function of the Laplace-Beltrami operator,, Dokl. Akad. Nauk SSSR, 230 (1976), 1017.

[4]

Y. Baryshnikov and V. Zharnitsky, Billiards and nonholonomic distributions,, J. Math. Sciences, 128 (2005), 2706. doi: 10.1007/s10958-005-0220-1.

[5]

É. Cartan, "Les Systèmes Différentiels Extérieurs et Leur Applications Géométriques,", Actualités Sci. Ind., (1945).

[6]

R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik,, Math. Z., 7 (1920), 1. doi: 10.1007/BF01199396.

[7]

J. J. Duistermaat and V. W. Guilleman, The spectrum of positive elliptic operators and periodic bi-characteristics,, Invent. Math., 2 (1975), 39. doi: 10.1007/BF01405172.

[8]

N. Filonov and Y. Safarov, Asymptotic estimates for the difference between the Dirichlet and Neumann counting functions,, (Russian) Funktsional. Anal. i Prilozhen., 44 (2010), 54.

[9]

L. Hörmander, Fourier integral operators. I,, Acta Math., 127 (1971), 79. doi: 10.1007/BF02392052.

[10]

L. Hörmander, The spectral function of an elliptic operator,, Acta Math., 121 (1968), 193.

[11]

V. Y. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary,, Func. Anal. Appl., 14 (1980), 98. doi: 10.1007/BF01086550.

[12]

V. Y. Ivriĭ, Everything started from Weyl,, presentation slides, ().

[13]

M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems,, American Journal of Mathematics, 79 (1957), 1. doi: 10.2307/2372692.

[14]

V. Petkov and L. Stojanov, On the number of periodic reflecting rays in generic domains,, Erg. Theor. & Dyn. Sys., 8 (1988), 81. doi: 10.1017/S0143385700004338.

[15]

A. Plakhov and V. Roshchina, Invisibility in billiards,, Nonlinearity, 24 (2011), 847. doi: 10.1088/0951-7715/24/3/007.

[16]

P. K. Raševskiĭ, "Geometrical Theory of Partial Differential Equations,", OGIZ, (1947).

[17]

M. R. Rychlik, Periodic points of the billiard ball map in a convex domain,, J. Diff. Geom., 30 (1989), 191.

[18]

Yu. Safarov, Precise spectral asymptotics and inverse problems,, in, 235 (1991), 239.

[19]

R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain in $\mathbb R^3$,, Adv. Math., 29 (1978), 244. doi: 10.1016/0001-8708(78)90013-0.

[20]

L. Stojanov, Note on the periodic points of the billiard,, J. Differential Geom., 34 (1991), 835.

[21]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in interior reflection of general form,, (Russian) Funktsional. Anal. i Prilozhen., 18 (1984), 1.

[22]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in the case of a piecewise smooth boundary,, (Russian) Dokl. Akad. Nauk SSSR, 286 (1986), 1043.

[23]

Ya. B. Vorobets, On the measure of the set of periodic points of a billiard,, Math. Notes, 55 (1994), 455. doi: 10.1007/BF02110371.

[24]

Hermann Weyl, "Über die asymptotische Verteilung der Eigenwerte,", Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, (1911), 110.

[25]

M. P. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem,, J. Differential Geom., 40 (1994), 155.

show all references

References:
[1]

A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction,, Nonlinearity, 22 (2009), 1247. doi: 10.1088/0951-7715/22/6/001.

[2]

V. I. Avakumovi ć, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten,, Math. Z., 65 (1956), 327. doi: 10.1007/BF01473886.

[3]

V. Babich and B. Levitan, The focussing problem and the asymptotics of the spectral function of the Laplace-Beltrami operator,, Dokl. Akad. Nauk SSSR, 230 (1976), 1017.

[4]

Y. Baryshnikov and V. Zharnitsky, Billiards and nonholonomic distributions,, J. Math. Sciences, 128 (2005), 2706. doi: 10.1007/s10958-005-0220-1.

[5]

É. Cartan, "Les Systèmes Différentiels Extérieurs et Leur Applications Géométriques,", Actualités Sci. Ind., (1945).

[6]

R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik,, Math. Z., 7 (1920), 1. doi: 10.1007/BF01199396.

[7]

J. J. Duistermaat and V. W. Guilleman, The spectrum of positive elliptic operators and periodic bi-characteristics,, Invent. Math., 2 (1975), 39. doi: 10.1007/BF01405172.

[8]

N. Filonov and Y. Safarov, Asymptotic estimates for the difference between the Dirichlet and Neumann counting functions,, (Russian) Funktsional. Anal. i Prilozhen., 44 (2010), 54.

[9]

L. Hörmander, Fourier integral operators. I,, Acta Math., 127 (1971), 79. doi: 10.1007/BF02392052.

[10]

L. Hörmander, The spectral function of an elliptic operator,, Acta Math., 121 (1968), 193.

[11]

V. Y. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary,, Func. Anal. Appl., 14 (1980), 98. doi: 10.1007/BF01086550.

[12]

V. Y. Ivriĭ, Everything started from Weyl,, presentation slides, ().

[13]

M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems,, American Journal of Mathematics, 79 (1957), 1. doi: 10.2307/2372692.

[14]

V. Petkov and L. Stojanov, On the number of periodic reflecting rays in generic domains,, Erg. Theor. & Dyn. Sys., 8 (1988), 81. doi: 10.1017/S0143385700004338.

[15]

A. Plakhov and V. Roshchina, Invisibility in billiards,, Nonlinearity, 24 (2011), 847. doi: 10.1088/0951-7715/24/3/007.

[16]

P. K. Raševskiĭ, "Geometrical Theory of Partial Differential Equations,", OGIZ, (1947).

[17]

M. R. Rychlik, Periodic points of the billiard ball map in a convex domain,, J. Diff. Geom., 30 (1989), 191.

[18]

Yu. Safarov, Precise spectral asymptotics and inverse problems,, in, 235 (1991), 239.

[19]

R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain in $\mathbb R^3$,, Adv. Math., 29 (1978), 244. doi: 10.1016/0001-8708(78)90013-0.

[20]

L. Stojanov, Note on the periodic points of the billiard,, J. Differential Geom., 34 (1991), 835.

[21]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in interior reflection of general form,, (Russian) Funktsional. Anal. i Prilozhen., 18 (1984), 1.

[22]

D. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem in the case of a piecewise smooth boundary,, (Russian) Dokl. Akad. Nauk SSSR, 286 (1986), 1043.

[23]

Ya. B. Vorobets, On the measure of the set of periodic points of a billiard,, Math. Notes, 55 (1994), 455. doi: 10.1007/BF02110371.

[24]

Hermann Weyl, "Über die asymptotische Verteilung der Eigenwerte,", Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, (1911), 110.

[25]

M. P. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem,, J. Differential Geom., 40 (1994), 155.

[1]

Dmitri Scheglov. Growth of periodic orbits and generalized diagonals for typical triangular billiards. Journal of Modern Dynamics, 2013, 7 (1) : 31-44. doi: 10.3934/jmd.2013.7.31

[2]

Michel L. Lapidus, Robert G. Niemeyer. Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3719-3740. doi: 10.3934/dcds.2013.33.3719

[3]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[4]

Daniel Franco, J. R. L. Webb. Collisionless orbits of singular and nonsingular dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 747-757. doi: 10.3934/dcds.2006.15.747

[5]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[6]

Richard Evan Schwartz. Unbounded orbits for outer billiards I. Journal of Modern Dynamics, 2007, 1 (3) : 371-424. doi: 10.3934/jmd.2007.1.371

[7]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[8]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[9]

Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367

[10]

Chen-Chang Peng, Kuan-Ju Chen. Existence of transversal homoclinic orbits in higher dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1181-1197. doi: 10.3934/dcdsb.2010.14.1181

[11]

Richard Evan Schwartz. Research announcement: unbounded orbits for outer billiards. Electronic Research Announcements, 2007, 14: 1-6. doi: 10.3934/era.2007.14.1

[12]

Misha Bialy. Maximizing orbits for higher-dimensional convex billiards. Journal of Modern Dynamics, 2009, 3 (1) : 51-59. doi: 10.3934/jmd.2009.3.51

[13]

Daniel Genin. Research announcement: Boundedness of orbits for trapezoidal outer billiards. Electronic Research Announcements, 2008, 15: 71-78. doi: 10.3934/era.2008.15.71

[14]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[15]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[16]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[17]

Gabriele Benedetti, Kai Zehmisch. On the existence of periodic orbits for magnetic systems on the two-sphere. Journal of Modern Dynamics, 2015, 9: 141-146. doi: 10.3934/jmd.2015.9.141

[18]

Armengol Gasull, Héctor Giacomini, Maite Grau. On the stability of periodic orbits for differential systems in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 495-509. doi: 10.3934/dcdsb.2008.10.495

[19]

Pedro J. Torres. Non-collision periodic solutions of forced dynamical systems with weak singularities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 693-698. doi: 10.3934/dcds.2004.11.693

[20]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]