2012, 6(3): 315-328. doi: 10.3934/amc.2012.6.315

Canonical- systematic form for codes in hierarchical poset metrics

1. 

UFRRJ - Universidade Federal Rural do Rio de Janeiro, BR467, km7, 23890-000 Seropédica - RJ, Brazil

2. 

IMECC/UNICAMP - State University of Campinas, Rua Srgio Buarque de Holanda, 651, Cidade Universitria 'Zeferino Vaz, 13083-859 - Campinas - SP, Brazil

Received  September 2011 Revised  May 2012 Published  August 2012

In this work we present a canonical-systematic form of a generator matrix for linear codes whith respect to a hierarchical poset metric on the linear space $\mathbb F_q^n$. We show that up to a linear isometry any such code is equivalent to the direct sum of codes with smaller dimensions. The canonical-systematic form enables to exhibit simple expressions for the generalized minimal weights (in the sense defined by Wei), the packing radius of the code, characterization of perfect codes and also syndrome decoding algorithm that has (in general) exponential gain when compared to usual syndrome decoding.
Citation: Luciano Viana Felix, Marcelo Firer. Canonical- systematic form for codes in hierarchical poset metrics. Advances in Mathematics of Communications, 2012, 6 (3) : 315-328. doi: 10.3934/amc.2012.6.315
References:
[1]

M. M. S. Alves, L. Panek and M. Firer, Error-block codes and poset metrics,, Adv. Math. Commun., 2 (2008), 95. doi: 10.3934/amc.2008.2.95.

[2]

M. M. S. Alves, L. Panek and M. Firer, Classification of Niederreiter-Rosenbloom-Tsfasman block codes,, IEEE Trans. Inform. Theory, 56 (2010), 5207.

[3]

R. Brualdi, J. S. Graves and M. Lawrence, Codes with a poset metric,, Discrete Math., 147 (1995), 57. doi: 10.1016/0012-365X(94)00228-B.

[4]

G. H. Hardy, Ramanujan's work on partitions and Asymptotic theory of partitions,, Chs. 6 and 8 in, (1999), 83.

[5]

H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity,, IEEE Trans. Inform. Theory, 51 (2005), 1424. doi: 10.1109/TIT.2005.844067.

[6]

H. Niederreiter, A combinatorial problem for vector spaces over finite fields,, Discrete Math., 96 (1991), 221. doi: 10.1016/0012-365X(91)90315-S.

[7]

H. Niederreiter, Orthogonal array and other combinatorial aspects in the theory of uniform point distributions in unit cubes,, Discrete Math., 106/107 (1992), 361. doi: 10.1016/0012-365X(92)90566-X.

[8]

L. Panek, M. Firer, H. K. Kim and J. Y. Hyun, Groups of linear isometries on poset structures,, Discrete Math., 308 (2008), 4116. doi: 10.1016/j.disc.2007.08.001.

[9]

M. Y. Rosenbloom and M. A. Tsfasman, Codes for the $m$-metric,, Prob. Inform. Transm., 33 (1997), 45.

[10]

V. K. Wei, Generalized Hamming weights for linear codes,, IEEE Trans. Inform. Theory, 37 (1991), 1412. doi: 10.1109/18.133259.

show all references

References:
[1]

M. M. S. Alves, L. Panek and M. Firer, Error-block codes and poset metrics,, Adv. Math. Commun., 2 (2008), 95. doi: 10.3934/amc.2008.2.95.

[2]

M. M. S. Alves, L. Panek and M. Firer, Classification of Niederreiter-Rosenbloom-Tsfasman block codes,, IEEE Trans. Inform. Theory, 56 (2010), 5207.

[3]

R. Brualdi, J. S. Graves and M. Lawrence, Codes with a poset metric,, Discrete Math., 147 (1995), 57. doi: 10.1016/0012-365X(94)00228-B.

[4]

G. H. Hardy, Ramanujan's work on partitions and Asymptotic theory of partitions,, Chs. 6 and 8 in, (1999), 83.

[5]

H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity,, IEEE Trans. Inform. Theory, 51 (2005), 1424. doi: 10.1109/TIT.2005.844067.

[6]

H. Niederreiter, A combinatorial problem for vector spaces over finite fields,, Discrete Math., 96 (1991), 221. doi: 10.1016/0012-365X(91)90315-S.

[7]

H. Niederreiter, Orthogonal array and other combinatorial aspects in the theory of uniform point distributions in unit cubes,, Discrete Math., 106/107 (1992), 361. doi: 10.1016/0012-365X(92)90566-X.

[8]

L. Panek, M. Firer, H. K. Kim and J. Y. Hyun, Groups of linear isometries on poset structures,, Discrete Math., 308 (2008), 4116. doi: 10.1016/j.disc.2007.08.001.

[9]

M. Y. Rosenbloom and M. A. Tsfasman, Codes for the $m$-metric,, Prob. Inform. Transm., 33 (1997), 45.

[10]

V. K. Wei, Generalized Hamming weights for linear codes,, IEEE Trans. Inform. Theory, 37 (1991), 1412. doi: 10.1109/18.133259.

[1]

Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115-122. doi: 10.3934/amc.2017006

[2]

Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041

[3]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[4]

Marcelo Muniz S. Alves, Luciano Panek, Marcelo Firer. Error-block codes and poset metrics. Advances in Mathematics of Communications, 2008, 2 (1) : 95-111. doi: 10.3934/amc.2008.2.95

[5]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[6]

Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021

[7]

Yiwei Liu, Zihui Liu. On some classes of codes with a few weights. Advances in Mathematics of Communications, 2018, 12 (2) : 415-428. doi: 10.3934/amc.2018025

[8]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[9]

Olof Heden, Faina I. Solov’eva. Partitions of $\mathbb F$n into non-parallel Hamming codes. Advances in Mathematics of Communications, 2009, 3 (4) : 385-397. doi: 10.3934/amc.2009.3.385

[10]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[11]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[12]

Yongbo Xia, Tor Helleseth, Chunlei Li. Some new classes of cyclic codes with three or six weights. Advances in Mathematics of Communications, 2015, 9 (1) : 23-36. doi: 10.3934/amc.2015.9.23

[13]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[14]

Jennifer D. Key, Washiela Fish, Eric Mwambene. Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \geq 2$. Advances in Mathematics of Communications, 2011, 5 (2) : 373-394. doi: 10.3934/amc.2011.5.373

[15]

David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401

[16]

Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057

[17]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[18]

Tongjiang Yan, Yanyan Liu, Yuhua Sun. Cyclic codes from two-prime generalized cyclotomic sequences of order 6. Advances in Mathematics of Communications, 2016, 10 (4) : 707-723. doi: 10.3934/amc.2016036

[19]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics & Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[20]

Ellina Grigorieva, Evgenii Khailov. Hierarchical differential games between manufacturer and retailer. Conference Publications, 2009, 2009 (Special) : 300-314. doi: 10.3934/proc.2009.2009.300

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]