• Previous Article
    Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions
  • NACO Home
  • This Issue
  • Next Article
    How to transform matrices $U_1, \ldots, U_p$ to matrices $V_1, \ldots, V_p$ so that $V_i V_j^T= {\mathbb O} $ if $ i \neq j $?
2012, 2(2): 279-291. doi: 10.3934/naco.2012.2.279

Jensen's inequality for quasiconvex functions

1. 

Mathematics, School of Engineering & Science, Victoria University, Melbourne, Australia

2. 

School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia

Received  October 2011 Revised  March 2012 Published  May 2012

Some inequalities of Jensen type and connected results are given for quasiconvex functions on convex sets in real linear spaces.
Citation: S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279
References:
[1]

M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex,, Tamkang J. Math, 41 (2010), 353.

[2]

M. Alomari, M. Darus and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means,, Comput. Math. Appl., 59 (2010), 225. doi: 10.1016/j.camwa.2009.08.002.

[3]

S. S. Dragomir, Two mappings associated with Jensen's inequality,, Extracta Math., 8 (1993), 102.

[4]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality,, Zb. Rad. (Krajujevac), 15 (1994), 65.

[5]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality,, Math. Balkanica (N.S.), 9 (1995), 3.

[6]

S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin,, Indian J. Math., 39 (1997), 1.

[7]

S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin,, Periodica Math. Hungar., 33 (1996), 93. doi: 10.1007/BF02093506.

[8]

S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality,, Bull. Austral. Math. Soc., 57 (1998), 377. doi: 10.1017/S0004972700031786.

[9]

S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type,, Soochow J. Math., 21 (1995), 335.

[10]

A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions,, in, 39 (2000), 129.

[11]

N. Hadjisavvas, Hadamard-type inequalities for quasiconvex functions,, J. Inequal. Pure Appl. Math., 4 (2003).

[12]

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions,, An. Univ. Craiova Ser. Mat. Inform., 34 (2007), 83.

[13]

M. Jovanović, Some inequalities for strong quasiconvex functions,, Glas. Mat. Ser. III, 24 (1989), 25.

[14]

M. Merkle, Jensen's inequality for multivariate medians,, J. Math. Anal. Appl., 370 (2010), 258. doi: 10.1016/j.jmaa.2010.04.033.

[15]

C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion,, in, 74 (2004), 403.

[16]

C. E. M. Pearce and A. M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities,, J. Math. Anal. Applic., 240 (1999), 92. doi: 10.1006/jmaa.1999.6593.

[17]

A. M. Rubinov and J. Dutta, Hadamard type inequality for quasiconvex functions in higher dimensions,, J. Math. Anal. Appl., 270 (2002), 80. doi: 10.1016/S0022-247X(02)00050-1.

[18]

M. Wagner, Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems,, J. Math. Anal. Appl., 355 (2009), 606. doi: 10.1016/j.jmaa.2009.01.059.

show all references

References:
[1]

M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex,, Tamkang J. Math, 41 (2010), 353.

[2]

M. Alomari, M. Darus and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means,, Comput. Math. Appl., 59 (2010), 225. doi: 10.1016/j.camwa.2009.08.002.

[3]

S. S. Dragomir, Two mappings associated with Jensen's inequality,, Extracta Math., 8 (1993), 102.

[4]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality,, Zb. Rad. (Krajujevac), 15 (1994), 65.

[5]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality,, Math. Balkanica (N.S.), 9 (1995), 3.

[6]

S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin,, Indian J. Math., 39 (1997), 1.

[7]

S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin,, Periodica Math. Hungar., 33 (1996), 93. doi: 10.1007/BF02093506.

[8]

S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality,, Bull. Austral. Math. Soc., 57 (1998), 377. doi: 10.1017/S0004972700031786.

[9]

S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type,, Soochow J. Math., 21 (1995), 335.

[10]

A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions,, in, 39 (2000), 129.

[11]

N. Hadjisavvas, Hadamard-type inequalities for quasiconvex functions,, J. Inequal. Pure Appl. Math., 4 (2003).

[12]

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions,, An. Univ. Craiova Ser. Mat. Inform., 34 (2007), 83.

[13]

M. Jovanović, Some inequalities for strong quasiconvex functions,, Glas. Mat. Ser. III, 24 (1989), 25.

[14]

M. Merkle, Jensen's inequality for multivariate medians,, J. Math. Anal. Appl., 370 (2010), 258. doi: 10.1016/j.jmaa.2010.04.033.

[15]

C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion,, in, 74 (2004), 403.

[16]

C. E. M. Pearce and A. M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities,, J. Math. Anal. Applic., 240 (1999), 92. doi: 10.1006/jmaa.1999.6593.

[17]

A. M. Rubinov and J. Dutta, Hadamard type inequality for quasiconvex functions in higher dimensions,, J. Math. Anal. Appl., 270 (2002), 80. doi: 10.1016/S0022-247X(02)00050-1.

[18]

M. Wagner, Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems,, J. Math. Anal. Appl., 355 (2009), 606. doi: 10.1016/j.jmaa.2009.01.059.

[1]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[2]

Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61

[3]

Kewei Zhang. On non-negative quasiconvex functions with quasimonotone gradients and prescribed zero sets. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 353-366. doi: 10.3934/dcds.2008.21.353

[4]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

[5]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[6]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[7]

Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1

[8]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[9]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[10]

Guodong Ma, Jinbao Jian. A QP-free algorithm of quasi-strongly sub-feasible directions for inequality constrained optimization. Journal of Industrial & Management Optimization, 2015, 11 (1) : 307-328. doi: 10.3934/jimo.2015.11.307

[11]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[12]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[13]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[14]

S. S. Dragomir, I. Gomm. Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 271-278. doi: 10.3934/naco.2012.2.271

[15]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[16]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[17]

Rudolf Ahlswede. The final form of Tao's inequality relating conditional expectation and conditional mutual information. Advances in Mathematics of Communications, 2007, 1 (2) : 239-242. doi: 10.3934/amc.2007.1.239

[18]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[19]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[20]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]