2012, 6(1): 59-78. doi: 10.3934/jmd.2012.6.59

Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition

1. 

Département deMathématiques, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France

2. 

Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126, Pisa (PI)

Received  November 2011 Published  May 2012

The arithmetics of the frequency and of the rotation number play a fundamental role in the study of reducibility of analytic quasiperiodic cocycles which are sufficiently close to a constant. In this paper we show how to generalize previous works by L.H. Eliasson which deal with the diophantine case so as to implement a Brjuno-Rüssmann arithmetical condition both on the frequency and on the rotation number. Our approach adapts the Pöschel-Rüssmann KAM method, which was previously used in the problem of linearization of vector fields, to the problem of reducing cocycles.
Citation: Claire Chavaudret, Stefano Marmi. Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. Journal of Modern Dynamics, 2012, 6 (1) : 59-78. doi: 10.3934/jmd.2012.6.59
References:
[1]

A. Avila, B. Fayad and R. Krikorian, A KAM scheme for $SL(2,R)$ cocycles with Liouvillean frequencies,, Geom. Funct. Anal., 21 (2011), 1001. doi: 10.1007/s00039-011-0135-6.

[2]

A. D. Brjuno, An analytic form of differential equations,, Math. Notes, 6 (1969), 927. doi: 10.1007/BF01146416.

[3]

C. Chavaudret, Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles,, to appear in Bull. Soc. Math. France, (2010).

[4]

L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation,, Comm. Math. Phys., 146 (1992), 447. doi: 10.1007/BF02097013.

[5]

L. H. Eliasson, Almost reducibility of linear quasi-periodic systems,, in, 69 (2001), 679.

[6]

A. Giorgilli and S. Marmi, Convergence radius in the Poincaré-Siegel problem,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 601.

[7]

R. Johnson and J. Moser, The rotation number for almost periodic potentials,, Comm. Math. Phys., 84 (1982), 403. doi: 10.1007/BF01208484.

[8]

S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties,, Comm. Math. Phys., 186 (1997), 265. doi: 10.1007/s002200050110.

[9]

J. Pöschel, KAM à la R,, Regul. Chaotic Dyn., 16 (2011), 17. doi: 10.1134/S1560354710520060.

[10]

H. Rüssmann, KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 683. doi: 10.3934/dcdss.2010.3.683.

[11]

J.-C. Yoccoz, "Petits Diviseurs en Dimension 1",, Astérisque, 231 (1995).

[12]

L.-S. Young, Lyapunov exponents for some quasi-periodic cocycles,, Ergodic Theory Dynam. Systems, 17 (1997), 483. doi: 10.1017/S0143385797079170.

[13]

J. Wang and Q. Zhou, Reducibility results for quasiperiodic cocycles with Liouvillean frequency,, J. Dynam. Differential Equations, 24 (2011), 61. doi: 10.1007/s10884-011-9235-0.

show all references

References:
[1]

A. Avila, B. Fayad and R. Krikorian, A KAM scheme for $SL(2,R)$ cocycles with Liouvillean frequencies,, Geom. Funct. Anal., 21 (2011), 1001. doi: 10.1007/s00039-011-0135-6.

[2]

A. D. Brjuno, An analytic form of differential equations,, Math. Notes, 6 (1969), 927. doi: 10.1007/BF01146416.

[3]

C. Chavaudret, Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles,, to appear in Bull. Soc. Math. France, (2010).

[4]

L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation,, Comm. Math. Phys., 146 (1992), 447. doi: 10.1007/BF02097013.

[5]

L. H. Eliasson, Almost reducibility of linear quasi-periodic systems,, in, 69 (2001), 679.

[6]

A. Giorgilli and S. Marmi, Convergence radius in the Poincaré-Siegel problem,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 601.

[7]

R. Johnson and J. Moser, The rotation number for almost periodic potentials,, Comm. Math. Phys., 84 (1982), 403. doi: 10.1007/BF01208484.

[8]

S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties,, Comm. Math. Phys., 186 (1997), 265. doi: 10.1007/s002200050110.

[9]

J. Pöschel, KAM à la R,, Regul. Chaotic Dyn., 16 (2011), 17. doi: 10.1134/S1560354710520060.

[10]

H. Rüssmann, KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 683. doi: 10.3934/dcdss.2010.3.683.

[11]

J.-C. Yoccoz, "Petits Diviseurs en Dimension 1",, Astérisque, 231 (1995).

[12]

L.-S. Young, Lyapunov exponents for some quasi-periodic cocycles,, Ergodic Theory Dynam. Systems, 17 (1997), 483. doi: 10.1017/S0143385797079170.

[13]

J. Wang and Q. Zhou, Reducibility results for quasiperiodic cocycles with Liouvillean frequency,, J. Dynam. Differential Equations, 24 (2011), 61. doi: 10.1007/s10884-011-9235-0.

[1]

Claire Chavaudret, Stefano Marmi. Erratum: Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. Journal of Modern Dynamics, 2015, 9: 285-287. doi: 10.3934/jmd.2015.9.285

[2]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[3]

Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477

[4]

Percy A. Deift, Thomas Trogdon, Govind Menon. On the condition number of the critically-scaled Laguerre Unitary Ensemble. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4287-4347. doi: 10.3934/dcds.2016.36.4287

[5]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[6]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[7]

E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401

[8]

Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789

[9]

Shie Mannor, Vianney Perchet, Gilles Stoltz. A primal condition for approachability with partial monitoring. Journal of Dynamics & Games, 2014, 1 (3) : 447-469. doi: 10.3934/jdg.2014.1.447

[10]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds . Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[11]

TÔn Vı$\underset{.}{\overset{\hat{\ }}{\mathop{\text{E}}}}\, $T T$\mathop {\text{A}}\limits_. $, Linhthi hoai Nguyen, Atsushi Yagi. A sustainability condition for stochastic forest model. Communications on Pure & Applied Analysis, 2017, 16 (2) : 699-718. doi: 10.3934/cpaa.2017034

[12]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2/3) : 597-611. doi: 10.3934/dcds.2007.18.597

[13]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[14]

Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549

[15]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[16]

Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93

[17]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[18]

H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure & Applied Analysis, 2006, 5 (4) : 907-918. doi: 10.3934/cpaa.2006.5.907

[19]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[20]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]