2012, 6(1): 1-40. doi: 10.3934/jmd.2012.6.1

Équidistribution, comptage et approximation par irrationnels quadratiques

1. 

Department of Mathematics and Statistics, P. O. Box 35, 40014 University of Jyväskylä, Finland

2. 

DMA, UMR 8553 CNRS, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 PARIS Cedex 05, France

Received  April 2011 Published  May 2012

Soit $M$ une variété hyperbolique de volume fini, nous montrons que les hypersurfaces équidistantes à une sous-variété $C$ de volume fini totalement géodésique s'équidistribuent dans $M$. Nous donnons une asymptotique précise du nombre de segments géodésiques de longueur au plus $t$, perpendiculaires communs à $C$ et au bord d'un voisinage cuspidal de $M$. Nous en déduisons des résultats sur le comptage d'irrationnels quadratiques sur $\mathbb{Q}$ ou sur une extension quadratique imaginaire de $\mathbb{Q}$, dans des orbites données des sous-groupes de congruence des groupes modulaires.

Let $M$ be a finite volume hyperbolic manifold. We show the equidistribution in $M$ of the equidistant hypersurfaces to a finite volume totally geodesic submanifold $C$. We prove a precise asymptotic formula on the number of geodesic arcs of lengths at most $t$, that are perpendicular to $C$ and to the boundary of a cuspidal neighbourhood of $M$. We deduce from it counting results of quadratic irrationals over $\mathbb{Q}$ or over imaginary quadratic extensions of $\mathbb{Q}$, in given orbits of congruence subgroups of the modular groups.
Citation: Jouni Parkkonen, Frédéric Paulin. Équidistribution, comptage et approximation par irrationnels quadratiques. Journal of Modern Dynamics, 2012, 6 (1) : 1-40. doi: 10.3934/jmd.2012.6.1
References:
[1]

M. Babillot, On the mixing property for hyperbolic systems,, Israel J. Math., 129 (2002), 61. doi: 10.1007/BF02773153.

[2]

A. F. Beardon, "The Geometry of Discrete Groups,", Grad. Texts Math., 91 (1983).

[3]

K. Belabas, S. Hersonsky and F. Paulin, Counting horoballs and rational geodesics,, Bull. Lond. Math. Soc., 33 (2001), 606. doi: 10.1112/S0024609301008244.

[4]

B. Bowditch, Geometrical finiteness with variable negative curvature,, Duke Math. J., 77 (1995), 229. doi: 10.1215/S0012-7094-95-07709-6.

[5]

M. R. Bridson and A. Haefliger, "Metric Spaces of Non-Positive Curvature,", Grund. Math. Wiss., 319 (1999).

[6]

J. Buchmann and U. Vollmer, "Binary Quadratic Forms: An Algorithmic Approach,", Alg. Comput. Math., 20 (2007).

[7]

D. A. Buell, "Binary Quadratic Forms. Classical Theory and Modern Computations,", Springer-Verlag, (1989).

[8]

Y. Bugeaud, "Approximation by Algebraic Numbers,", Camb. Tracts Math., 160 (2004).

[9]

E. Burger, A tail of two palindromes,, Amer. Math. Month., 112 (2005), 311. doi: 10.2307/30037467.

[10]

P. Buser and H. Karcher, "Gromov's Almost Flat Manifolds,", Astérisque, 81 (1981).

[11]

H. Cohn, "A Second Course in Number Theory,", John Wiley & Sons, (1962).

[12]

F. Dal'Bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis,, Israel J. Math., 118 (2000), 109.

[13]

J. Elstrodt, F. Grunewald and J. Mennicke, "Groups Acting on Hyperbolic Space. Harmonic Analysis and Number Theory,", Springer Mono. Math., (1998).

[14]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181. doi: 10.1215/S0012-7094-93-07108-6.

[15]

A. Gorodnik and F. Paulin, Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows,, preprint, ().

[16]

O. Herrmann, Über die Verteilung der Längen geodätischer Lote in hyperbolischen Raumformen,, Math. Z., 79 (1962), 323. doi: 10.1007/BF01193127.

[17]

S. Hersonsky, Covolume estimates for discrete groups of hyperbolic isometries having parabolic elements,, Michigan Math. J., 40 (1993), 467. doi: 10.1307/mmj/1029004832.

[18]

S. Hersonsky and F. Paulin, Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions,, Erg. Theo. Dyn. Sys., 24 (2004), 803. doi: 10.1017/S0143385703000300.

[19]

H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen,, Math. Ann., 138 (1959), 1. doi: 10.1007/BF01369663.

[20]

S. Katok, "Fuchsian Groups,", Chicago Lectures in Mathematics, (1992).

[21]

E. Landau, "Elementary Number Theory,", Translated by J. E. Goodman, (1958).

[22]

Y. Long, Criterion for $\SL_2(\mathbbZ$)-matrix to be conjugate to its inverse,, Chin. Ann. Math. Ser. B, 23 (2002), 455.

[23]

C. Maclachlan and A. Reid, "The Arithmetic of Hyperbolic $3$-Manifolds,", Grad. Texts in Math., 219 (2003).

[24]

G. Margulis, "On Some Aspects of the Theory of Anosov Systems,", With a survey by Richard Sharp: \emph{Periodic orbits of hyperbolic flows}, (2004).

[25]

W. Narkiewicz, Elementary and analytic theory of algebraic numbers,, Second edition, (1990).

[26]

M. Newman, "Integral Matrices,", Pure and Applied Mathematics, (1972).

[27]

H. Oh and N. Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups,, preprint, ().

[28]

O. Perron, "Die Lehre von den Kettenbrüchen,", B. G. Teubner, (1913).

[29]

J. Parkkonen and F. Paulin, Equidistribution, counting and arithmetic applications,, Oberwolfach Report, 29 (2010), 35.

[30]

J. Parkkonen and F. Paulin, Spiraling spectra of geodesic lines in negatively curved manifolds,, Math. Z., 268 (2011), 101. doi: 10.1007/s00209-010-0662-0.

[31]

J. Parkkonen and F. Paulin, On the representations of integers by indefinite binary Hermitian forms,, Bull. London Math. Soc., 43 (2011), 1048. doi: 10.1112/blms/bdr041.

[32]

J. Parkkonen and F. Paulin, On the arithmetic and geometry of binary Hamiltonian forms,, With an appendix by Vincent Emery, ().

[33]

J. Parkkonen and F. Paulin, Skinning measure in negative curvature and equidistribution of equidistant submanifolds,, preprint, ().

[34]

J. Parkkonen and F. Paulin, Counting arcs in negative curvature,, preprint, ().

[35]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature,, in preparation., ().

[36]

L. Polterovich and Z. Rudnick, Stable mixing for cat maps and quasi-morphisms of the modular group,, Erg. Theo. Dyn. Sys., 24 (2004), 609. doi: 10.1017/S0143385703000531.

[37]

T. Roblin, Ergodicité et équidistribution en courbure négative,, Mémoire Soc. Math. France (N.S.), (2003).

[38]

P. Samuel, "Théorie Algébrique des Nombres,", Hermann, (1967).

[39]

P. Sarnak, Class numbers of indefinite binary quadratic forms,, J. Number Theo., 15 (1982), 229. doi: 10.1016/0022-314X(82)90028-2.

[40]

P. Sarnak, "Reciprocal Geodesics. Analytic Number Theory,", Clay Math. Proc., 7 (2007), 217.

[41]

G. Shimura, "Introduction to the Arithmetic Theory of Automorphic Functions,", Kanô Memorial Lectures, (1971).

[42]

M. Waldschmidt, "Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables,", Grundlehren der Mathematischen Wissenschaften, 326 (2000).

show all references

References:
[1]

M. Babillot, On the mixing property for hyperbolic systems,, Israel J. Math., 129 (2002), 61. doi: 10.1007/BF02773153.

[2]

A. F. Beardon, "The Geometry of Discrete Groups,", Grad. Texts Math., 91 (1983).

[3]

K. Belabas, S. Hersonsky and F. Paulin, Counting horoballs and rational geodesics,, Bull. Lond. Math. Soc., 33 (2001), 606. doi: 10.1112/S0024609301008244.

[4]

B. Bowditch, Geometrical finiteness with variable negative curvature,, Duke Math. J., 77 (1995), 229. doi: 10.1215/S0012-7094-95-07709-6.

[5]

M. R. Bridson and A. Haefliger, "Metric Spaces of Non-Positive Curvature,", Grund. Math. Wiss., 319 (1999).

[6]

J. Buchmann and U. Vollmer, "Binary Quadratic Forms: An Algorithmic Approach,", Alg. Comput. Math., 20 (2007).

[7]

D. A. Buell, "Binary Quadratic Forms. Classical Theory and Modern Computations,", Springer-Verlag, (1989).

[8]

Y. Bugeaud, "Approximation by Algebraic Numbers,", Camb. Tracts Math., 160 (2004).

[9]

E. Burger, A tail of two palindromes,, Amer. Math. Month., 112 (2005), 311. doi: 10.2307/30037467.

[10]

P. Buser and H. Karcher, "Gromov's Almost Flat Manifolds,", Astérisque, 81 (1981).

[11]

H. Cohn, "A Second Course in Number Theory,", John Wiley & Sons, (1962).

[12]

F. Dal'Bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis,, Israel J. Math., 118 (2000), 109.

[13]

J. Elstrodt, F. Grunewald and J. Mennicke, "Groups Acting on Hyperbolic Space. Harmonic Analysis and Number Theory,", Springer Mono. Math., (1998).

[14]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181. doi: 10.1215/S0012-7094-93-07108-6.

[15]

A. Gorodnik and F. Paulin, Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows,, preprint, ().

[16]

O. Herrmann, Über die Verteilung der Längen geodätischer Lote in hyperbolischen Raumformen,, Math. Z., 79 (1962), 323. doi: 10.1007/BF01193127.

[17]

S. Hersonsky, Covolume estimates for discrete groups of hyperbolic isometries having parabolic elements,, Michigan Math. J., 40 (1993), 467. doi: 10.1307/mmj/1029004832.

[18]

S. Hersonsky and F. Paulin, Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions,, Erg. Theo. Dyn. Sys., 24 (2004), 803. doi: 10.1017/S0143385703000300.

[19]

H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen,, Math. Ann., 138 (1959), 1. doi: 10.1007/BF01369663.

[20]

S. Katok, "Fuchsian Groups,", Chicago Lectures in Mathematics, (1992).

[21]

E. Landau, "Elementary Number Theory,", Translated by J. E. Goodman, (1958).

[22]

Y. Long, Criterion for $\SL_2(\mathbbZ$)-matrix to be conjugate to its inverse,, Chin. Ann. Math. Ser. B, 23 (2002), 455.

[23]

C. Maclachlan and A. Reid, "The Arithmetic of Hyperbolic $3$-Manifolds,", Grad. Texts in Math., 219 (2003).

[24]

G. Margulis, "On Some Aspects of the Theory of Anosov Systems,", With a survey by Richard Sharp: \emph{Periodic orbits of hyperbolic flows}, (2004).

[25]

W. Narkiewicz, Elementary and analytic theory of algebraic numbers,, Second edition, (1990).

[26]

M. Newman, "Integral Matrices,", Pure and Applied Mathematics, (1972).

[27]

H. Oh and N. Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups,, preprint, ().

[28]

O. Perron, "Die Lehre von den Kettenbrüchen,", B. G. Teubner, (1913).

[29]

J. Parkkonen and F. Paulin, Equidistribution, counting and arithmetic applications,, Oberwolfach Report, 29 (2010), 35.

[30]

J. Parkkonen and F. Paulin, Spiraling spectra of geodesic lines in negatively curved manifolds,, Math. Z., 268 (2011), 101. doi: 10.1007/s00209-010-0662-0.

[31]

J. Parkkonen and F. Paulin, On the representations of integers by indefinite binary Hermitian forms,, Bull. London Math. Soc., 43 (2011), 1048. doi: 10.1112/blms/bdr041.

[32]

J. Parkkonen and F. Paulin, On the arithmetic and geometry of binary Hamiltonian forms,, With an appendix by Vincent Emery, ().

[33]

J. Parkkonen and F. Paulin, Skinning measure in negative curvature and equidistribution of equidistant submanifolds,, preprint, ().

[34]

J. Parkkonen and F. Paulin, Counting arcs in negative curvature,, preprint, ().

[35]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature,, in preparation., ().

[36]

L. Polterovich and Z. Rudnick, Stable mixing for cat maps and quasi-morphisms of the modular group,, Erg. Theo. Dyn. Sys., 24 (2004), 609. doi: 10.1017/S0143385703000531.

[37]

T. Roblin, Ergodicité et équidistribution en courbure négative,, Mémoire Soc. Math. France (N.S.), (2003).

[38]

P. Samuel, "Théorie Algébrique des Nombres,", Hermann, (1967).

[39]

P. Sarnak, Class numbers of indefinite binary quadratic forms,, J. Number Theo., 15 (1982), 229. doi: 10.1016/0022-314X(82)90028-2.

[40]

P. Sarnak, "Reciprocal Geodesics. Analytic Number Theory,", Clay Math. Proc., 7 (2007), 217.

[41]

G. Shimura, "Introduction to the Arithmetic Theory of Automorphic Functions,", Kanô Memorial Lectures, (1971).

[42]

M. Waldschmidt, "Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables,", Grundlehren der Mathematischen Wissenschaften, 326 (2000).

[1]

Ronny Bergmann, Raymond H. Chan, Ralf Hielscher, Johannes Persch, Gabriele Steidl. Restoration of manifold-valued images by half-quadratic minimization. Inverse Problems & Imaging, 2016, 10 (2) : 281-304. doi: 10.3934/ipi.2016001

[2]

Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173

[3]

Kai-Uwe Schmidt. The merit factor of binary arrays derived from the quadratic character. Advances in Mathematics of Communications, 2011, 5 (4) : 589-607. doi: 10.3934/amc.2011.5.589

[4]

T. Colin, D. Lannes. Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 83-100. doi: 10.3934/dcds.2004.11.83

[5]

Roger Brockett. Controllability with quadratic drift. Mathematical Control & Related Fields, 2013, 3 (4) : 433-446. doi: 10.3934/mcrf.2013.3.433

[6]

Luis D'Alto, Martin Corless. Incremental quadratic stability. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 175-201. doi: 10.3934/naco.2013.3.175

[7]

Hélène Hibon, Ying Hu, Yiqing Lin, Peng Luo, Falei Wang. Quadratic BSDEs with mean reflection. Mathematical Control & Related Fields, 2018, 8 (3&4) : 721-738. doi: 10.3934/mcrf.2018031

[8]

Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027

[9]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[10]

B. Coll, Chengzhi Li, Rafel Prohens. Quadratic perturbations of a class of quadratic reversible systems with two centers. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 699-729. doi: 10.3934/dcds.2009.24.699

[11]

Haihua Liang, Yulin Zhao. Quadratic perturbations of a class of quadratic reversible systems with one center. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 325-335. doi: 10.3934/dcds.2010.27.325

[12]

Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269

[13]

Sébastien Gautier, Lubomir Gavrilov, Iliya D. Iliev. Perturbations of quadratic centers of genus one. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 511-535. doi: 10.3934/dcds.2009.25.511

[14]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[15]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[16]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[17]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

[18]

Carl Bracken, Zhengbang Zha. On the Fourier spectra of the infinite families of quadratic APN functions. Advances in Mathematics of Communications, 2009, 3 (3) : 219-226. doi: 10.3934/amc.2009.3.219

[19]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[20]

Linping Peng, Yazhi Lei. The cyclicity of the period annulus of a quadratic reversible system with a hemicycle. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 873-890. doi: 10.3934/dcds.2011.30.873

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]