2012, 1(1): 141-154. doi: 10.3934/eect.2012.1.141

Carleman estimates for some anisotropic elasticity systems and applications

1. 

Wichita State University, 1845 Fairmount, Wichita, KS, 67260-0033

Received  October 2011 Revised  February 2012 Published  March 2012

We show that under some conditions one can obtain Carleman type estimates for the transversely isotropic elasticity system with residual stress. We consider both time dependent and static cases. The main idea is to reduce this system to a principally upper triangular one and the main technical tool is Carleman estimates with two large parameters for general second order partial differential operators.
Citation: Victor Isakov. Carleman estimates for some anisotropic elasticity systems and applications. Evolution Equations & Control Theory, 2012, 1 (1) : 141-154. doi: 10.3934/eect.2012.1.141
References:
[1]

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system,, Electr. J. Diff. Equat., 2000 ().

[2]

H. Ding, W. Chen and L. Zhang, "Elasticity of Transversely Isotropic Materials,", Solid Mechanics and its Applications, 126 (2006).

[3]

M. Eller and V. Isakov, Carleman estimates with two large parameters and applications,, in, 268 (2000), 117.

[4]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell and elasticity system, in, Nonlinear Partial Differential Equations. Collège de France Seminar, Vol. XIV, 31 (2002), 329.

[5]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1976).

[6]

O. Imanuvilov, V. Isakov and M. Yamamoto, An inverse problem for the dynamical Lamé system with two sets of boundary data,, Comm. Pure Appl. Math., 56 (2003), 1366. doi: 10.1002/cpa.10097.

[7]

V. Isakov, A nonhyperbolic Cauchy problem for $\square_b\square_c$ and its applications to elasticity theory,, Comm. Pure and Applied Math., 39 (1986), 747. doi: 10.1002/cpa.3160390603.

[8]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217.

[9]

V. Isakov, On the uniqueness of the continuation for a thermoelasticity system,, SIAM J. Math. Anal., 33 (2001), 509. doi: 10.1137/S0036141000366509.

[10]

V. Isakov, "Inverse Problems for Partial Differential Equation," Second edition,, Applied Mathematical Sciences, 127 (2006).

[11]

V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators,, in, 10 (2009), 135.

[12]

V. Isakov and N. Kim, Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress,, Discr. Cont. Dyn. Syst., 27 (2010), 799. doi: 10.3934/dcds.2010.27.799.

[13]

V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress,, in, 333 (2003), 99.

[14]

V. Isakov, J.-N. Wang and M. Yamamoto, Uniqueness and stability of determining the residual stress by one measurement,, Comm. Part. Diff. Equat., 23 (2007), 833.

[15]

A. Khaidarov, Carleman estimates and inverse problems for second order hyperbolic equations,, Math. USSR Sbornik, 58 (1987), 267. doi: 10.1070/SM1987v058n01ABEH003103.

[16]

I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second order hyperbolic equations with variable coefficients,, J. Math. Anal. Appl., 235 (1999), 13. doi: 10.1006/jmaa.1999.6348.

[17]

C.-L. Lin, G. Nakamura and M. Sini, Unique continuation for the elastic transversely isotropic dynamical systems and its application,, J. Diff. Equat., 245 (2008), 3008. doi: 10.1016/j.jde.2008.07.021.

[18]

C.-S. Man, Hartig's law and linear elasticity with initial stress,, Inverse Problems, 14 (1998), 313. doi: 10.1088/0266-5611/14/2/007.

[19]

A. Mazzucato and L. Rachele, On transversely isotropic elastic media with ellipsoidal slowness surfaces,, Mathematics and Mechanics of Solids, 13 (2008), 611. doi: 10.1177/1081286507078498.

[20]

R. Payton, "Elastic Wave Propagation in Transversely Isotropic Media,", Kluwer, (1983). doi: 10.1007/978-94-009-6866-0.

[21]

V. Romanov, Carleman estimates for second-order hyperbolic equations,, Sib. Math. J., 47 (2006), 135. doi: 10.1007/s11202-006-0014-9.

show all references

References:
[1]

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system,, Electr. J. Diff. Equat., 2000 ().

[2]

H. Ding, W. Chen and L. Zhang, "Elasticity of Transversely Isotropic Materials,", Solid Mechanics and its Applications, 126 (2006).

[3]

M. Eller and V. Isakov, Carleman estimates with two large parameters and applications,, in, 268 (2000), 117.

[4]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell and elasticity system, in, Nonlinear Partial Differential Equations. Collège de France Seminar, Vol. XIV, 31 (2002), 329.

[5]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1976).

[6]

O. Imanuvilov, V. Isakov and M. Yamamoto, An inverse problem for the dynamical Lamé system with two sets of boundary data,, Comm. Pure Appl. Math., 56 (2003), 1366. doi: 10.1002/cpa.10097.

[7]

V. Isakov, A nonhyperbolic Cauchy problem for $\square_b\square_c$ and its applications to elasticity theory,, Comm. Pure and Applied Math., 39 (1986), 747. doi: 10.1002/cpa.3160390603.

[8]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217.

[9]

V. Isakov, On the uniqueness of the continuation for a thermoelasticity system,, SIAM J. Math. Anal., 33 (2001), 509. doi: 10.1137/S0036141000366509.

[10]

V. Isakov, "Inverse Problems for Partial Differential Equation," Second edition,, Applied Mathematical Sciences, 127 (2006).

[11]

V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators,, in, 10 (2009), 135.

[12]

V. Isakov and N. Kim, Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress,, Discr. Cont. Dyn. Syst., 27 (2010), 799. doi: 10.3934/dcds.2010.27.799.

[13]

V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress,, in, 333 (2003), 99.

[14]

V. Isakov, J.-N. Wang and M. Yamamoto, Uniqueness and stability of determining the residual stress by one measurement,, Comm. Part. Diff. Equat., 23 (2007), 833.

[15]

A. Khaidarov, Carleman estimates and inverse problems for second order hyperbolic equations,, Math. USSR Sbornik, 58 (1987), 267. doi: 10.1070/SM1987v058n01ABEH003103.

[16]

I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second order hyperbolic equations with variable coefficients,, J. Math. Anal. Appl., 235 (1999), 13. doi: 10.1006/jmaa.1999.6348.

[17]

C.-L. Lin, G. Nakamura and M. Sini, Unique continuation for the elastic transversely isotropic dynamical systems and its application,, J. Diff. Equat., 245 (2008), 3008. doi: 10.1016/j.jde.2008.07.021.

[18]

C.-S. Man, Hartig's law and linear elasticity with initial stress,, Inverse Problems, 14 (1998), 313. doi: 10.1088/0266-5611/14/2/007.

[19]

A. Mazzucato and L. Rachele, On transversely isotropic elastic media with ellipsoidal slowness surfaces,, Mathematics and Mechanics of Solids, 13 (2008), 611. doi: 10.1177/1081286507078498.

[20]

R. Payton, "Elastic Wave Propagation in Transversely Isotropic Media,", Kluwer, (1983). doi: 10.1007/978-94-009-6866-0.

[21]

V. Romanov, Carleman estimates for second-order hyperbolic equations,, Sib. Math. J., 47 (2006), 135. doi: 10.1007/s11202-006-0014-9.

[1]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[2]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[3]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[4]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[5]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[6]

Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428

[7]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[8]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[9]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[10]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[11]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[12]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 367-380. doi: 10.3934/dcds.2009.23.367

[13]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[14]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[15]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I — . Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[16]

Yanqing Wang, Donghui Yang, Jiongmin Yong, Zhiyong Yu. Exact controllability of linear stochastic differential equations and related problems. Mathematical Control & Related Fields, 2017, 7 (2) : 305-345. doi: 10.3934/mcrf.2017011

[17]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[18]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[19]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[20]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

2016 Impact Factor: 0.826

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]