2012, 1(1): 57-80. doi: 10.3934/eect.2012.1.57

Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations

1. 

Kharkov National Universit, Department of Mathematics and Mechanics, 4 Svobody sq, 61077 Kharkov

2. 

Department of Mechanics and Mathematics, Kharkov National University, 4 Svobody Sq. 61077 Kharkov, Ukraine

Received  October 2011 Revised  January 2012 Published  March 2012

We deal with an initial boundary value problem for the Schrödinger-Boussinesq system arising in plasma physics in two-dimensional domains. We prove the global Hadamard well-posedness of this problem (with respect to the topology which is weaker than topology associated with the standard variational (weak) solutions) and study properties of the solutions. In the dissipative case the existence of a global attractor is established.
Citation: Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57
References:
[1]

M. Abounouh, O. Goubet and A. Hakim, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger systems,, Differential Integral Equations, 16 (2003), 573.

[2]

A. Babin and M. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).

[3]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications,, Discrete Continuous Dynam. Systems, 10 (2004), 31.

[4]

P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling,, SIAM J. Math. Anal., 21 (1990), 1190. doi: 10.1137/0521065.

[5]

J. Bourgain, On the Cauchy and invariant measure proplem for the periodic Zakharov system,, Duke Math. J., 76 (1994), 175. doi: 10.1215/S0012-7094-94-07607-2.

[6]

J. Bourgain and J. Colliander, On well-posedness of the Zakharov system,, Internat. Math. Res. Notices, 1996 (): 515. doi: 10.1155/S1073792896000359.

[7]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1.

[8]

A. Boutet de Monvel and I. Chueshov, Uniqueness theorem for weak solutions of von Karman evolution equations,, J. Mathematical Analysis and Applications, 221 (1998), 419. doi: 10.1006/jmaa.1997.5681.

[9]

I. D. Chueshov, "Vvedenie v Teoriyu Beskonechnomernykh Dissipativnykh Sistem," (Russian) [Introduction to the Theory of Infinite-Dimensional Dissipative Systems],, Universitet·skie Lektsii po Sovremennoĭ Matematike [University Lectures in Contemporary Mathematics], (1999).

[10]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models,, Discrete Discrete Continuous Dynam. Systems, 15 (2006), 777.

[11]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008).

[12]

I. Chueshov and I. Lasiecka, "Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,", Springer Monographs in Mathematics, (2010).

[13]

I. Chueshov and I. Lasiecka, On Global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity,, Commun. Partial Dif. Eqs., 36 (2011), 67. doi: 10.1080/03605302.2010.484472.

[14]

I. Chueshov and A. Shcherbina, On 2D Zakharov system in a bounded domain,, Differential and Integral Equations, 18 (2005), 781.

[15]

I. Flahaut, Attractors for the dissipative Zakharov system,, Nonlinear Analysis, 16 (1991), 599. doi: 10.1016/0362-546X(91)90170-6.

[16]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy proplem for the Zakharov system,, J. Functional Analysis, 151 (1997), 384. doi: 10.1006/jfan.1997.3148.

[17]

L. Glangetas and F. Merle, Existence and self-similar blow up solutions for Zakharov equation in dimension two. I,, Commun. Math. Phys., 160 (1994), 173. doi: 10.1007/BF02099792.

[18]

O. Goubet and I. Moise, Attractor for dissipative Zakharov system,, Nonlinear Analysis, 31 (1998), 823. doi: 10.1016/S0362-546X(97)00441-0.

[19]

M. Grasselli, G. Schimperna, and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term,, Commun. Partial Dif. Eqs., 34 (2009), 137. doi: 10.1080/03605300802608247.

[20]

B. Guo and F. Chen, Finite dimensional behaviour of global attractors for weakly damped nonlinear Schrödinger-Boussinesq equations,, Physica D, 93 (1996), 101.

[21]

B. Guo and X. Du, Existence of the time periodic solution for damped Schrödinger-Boussinesq equation,, Commun. in Nonlin. Sci. Numer. Simul., 5 (2000), 179. doi: 10.1016/S1007-5704(00)90032-7.

[22]

B. Guo and X. Du, The behavior of attractors for damped Schrödinger-Boussinesq equation,, Commun. in Nonlin. Sci. Numer. Simul., 6 (2001), 54. doi: 10.1016/S1007-5704(01)90030-9.

[23]

B. Guo and X. Du, Existence of the periodic solution for the weakly damped Schrödinger-Boussinesq equation,, J. Mathematical Analysis and Applications, 262 (2001), 453. doi: 10.1006/jmaa.2000.7455.

[24]

N. Hayashi and W. von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations,, J. Mathematical Society of Japan, 39 (1987), 489. doi: 10.2969/jmsj/03930489.

[25]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems,, in, 50 (2002), 197.

[26]

O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Lezioni Lincee [Lincei Lectures], (1991).

[27]

Y. Li and Q. Chen, Finite dimensional global attractor for dissipative Schrödinger-Boussinesq equations,, J. Mathematical Analysis and Applications, 205 (1997), 107. doi: 10.1006/jmaa.1996.5148.

[28]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," Vol. 2, (French),, Travaux et Recherches Mathématiques, (1968).

[29]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains,, J. Differential Equations, 170 (2001), 281.

[30]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, Nonlinearity, 11 (1998), 1369. doi: 10.1088/0951-7715/11/5/012.

[31]

V. Sedenko, Uniqueness of generalized solution of initial boundary value problem of nonlinear oscilations theory of shallow shells, (Russian),, Dokl. Akad. Nauk SSSR, 316 (1991), 1319.

[32]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura ed Applicata (4), 146 (1987), 65.

[33]

A. Shcherbina, Gevrey regularity of the global attractor for the dissipative Zakharov system,, Dynamical Systems, 18 (2003), 201. doi: 10.1080/14689360310001597269.

[34]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Applied Mathematical Sciences, 68 (1988).

show all references

References:
[1]

M. Abounouh, O. Goubet and A. Hakim, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger systems,, Differential Integral Equations, 16 (2003), 573.

[2]

A. Babin and M. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).

[3]

J. Ball, Global attractors for damped semilinear wave equations. Partial differential equations and applications,, Discrete Continuous Dynam. Systems, 10 (2004), 31.

[4]

P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling,, SIAM J. Math. Anal., 21 (1990), 1190. doi: 10.1137/0521065.

[5]

J. Bourgain, On the Cauchy and invariant measure proplem for the periodic Zakharov system,, Duke Math. J., 76 (1994), 175. doi: 10.1215/S0012-7094-94-07607-2.

[6]

J. Bourgain and J. Colliander, On well-posedness of the Zakharov system,, Internat. Math. Res. Notices, 1996 (): 515. doi: 10.1155/S1073792896000359.

[7]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1.

[8]

A. Boutet de Monvel and I. Chueshov, Uniqueness theorem for weak solutions of von Karman evolution equations,, J. Mathematical Analysis and Applications, 221 (1998), 419. doi: 10.1006/jmaa.1997.5681.

[9]

I. D. Chueshov, "Vvedenie v Teoriyu Beskonechnomernykh Dissipativnykh Sistem," (Russian) [Introduction to the Theory of Infinite-Dimensional Dissipative Systems],, Universitet·skie Lektsii po Sovremennoĭ Matematike [University Lectures in Contemporary Mathematics], (1999).

[10]

I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models,, Discrete Discrete Continuous Dynam. Systems, 15 (2006), 777.

[11]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008).

[12]

I. Chueshov and I. Lasiecka, "Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,", Springer Monographs in Mathematics, (2010).

[13]

I. Chueshov and I. Lasiecka, On Global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity,, Commun. Partial Dif. Eqs., 36 (2011), 67. doi: 10.1080/03605302.2010.484472.

[14]

I. Chueshov and A. Shcherbina, On 2D Zakharov system in a bounded domain,, Differential and Integral Equations, 18 (2005), 781.

[15]

I. Flahaut, Attractors for the dissipative Zakharov system,, Nonlinear Analysis, 16 (1991), 599. doi: 10.1016/0362-546X(91)90170-6.

[16]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy proplem for the Zakharov system,, J. Functional Analysis, 151 (1997), 384. doi: 10.1006/jfan.1997.3148.

[17]

L. Glangetas and F. Merle, Existence and self-similar blow up solutions for Zakharov equation in dimension two. I,, Commun. Math. Phys., 160 (1994), 173. doi: 10.1007/BF02099792.

[18]

O. Goubet and I. Moise, Attractor for dissipative Zakharov system,, Nonlinear Analysis, 31 (1998), 823. doi: 10.1016/S0362-546X(97)00441-0.

[19]

M. Grasselli, G. Schimperna, and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term,, Commun. Partial Dif. Eqs., 34 (2009), 137. doi: 10.1080/03605300802608247.

[20]

B. Guo and F. Chen, Finite dimensional behaviour of global attractors for weakly damped nonlinear Schrödinger-Boussinesq equations,, Physica D, 93 (1996), 101.

[21]

B. Guo and X. Du, Existence of the time periodic solution for damped Schrödinger-Boussinesq equation,, Commun. in Nonlin. Sci. Numer. Simul., 5 (2000), 179. doi: 10.1016/S1007-5704(00)90032-7.

[22]

B. Guo and X. Du, The behavior of attractors for damped Schrödinger-Boussinesq equation,, Commun. in Nonlin. Sci. Numer. Simul., 6 (2001), 54. doi: 10.1016/S1007-5704(01)90030-9.

[23]

B. Guo and X. Du, Existence of the periodic solution for the weakly damped Schrödinger-Boussinesq equation,, J. Mathematical Analysis and Applications, 262 (2001), 453. doi: 10.1006/jmaa.2000.7455.

[24]

N. Hayashi and W. von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations,, J. Mathematical Society of Japan, 39 (1987), 489. doi: 10.2969/jmsj/03930489.

[25]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems,, in, 50 (2002), 197.

[26]

O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Lezioni Lincee [Lincei Lectures], (1991).

[27]

Y. Li and Q. Chen, Finite dimensional global attractor for dissipative Schrödinger-Boussinesq equations,, J. Mathematical Analysis and Applications, 205 (1997), 107. doi: 10.1006/jmaa.1996.5148.

[28]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," Vol. 2, (French),, Travaux et Recherches Mathématiques, (1968).

[29]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains,, J. Differential Equations, 170 (2001), 281.

[30]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, Nonlinearity, 11 (1998), 1369. doi: 10.1088/0951-7715/11/5/012.

[31]

V. Sedenko, Uniqueness of generalized solution of initial boundary value problem of nonlinear oscilations theory of shallow shells, (Russian),, Dokl. Akad. Nauk SSSR, 316 (1991), 1319.

[32]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura ed Applicata (4), 146 (1987), 65.

[33]

A. Shcherbina, Gevrey regularity of the global attractor for the dissipative Zakharov system,, Dynamical Systems, 18 (2003), 201. doi: 10.1080/14689360310001597269.

[34]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Applied Mathematical Sciences, 68 (1988).

[1]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[2]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[3]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[4]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[5]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[6]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[7]

Wenru Huo, Aimin Huang. The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2531-2550. doi: 10.3934/dcdsb.2016059

[8]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[9]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[10]

Brian Ryals, Robert J. Sacker. Global stability in the 2D Ricker equation revisited. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 585-604. doi: 10.3934/dcdsb.2017028

[11]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[12]

Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025

[13]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[14]

Kei Matsuura. Exponential attractors for 2d magneto-micropolor fluid flow in bounded domain. Conference Publications, 2005, 2005 (Special) : 634-641. doi: 10.3934/proc.2005.2005.634

[15]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[16]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[17]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[18]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[19]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[20]

Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198

2016 Impact Factor: 0.826

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]