2012, 1(1): 1-16. doi: 10.3934/eect.2012.1.1

Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension

1. 

Octav Mayer Institute of Mathematics (Romanian Academy), Bd. Carol I, no. 8, Iaşi 700505, Romania

2. 

Octav Mayer Institute of Mathematics (Romanian Academy), and Alexandru Ioan Cuza University (Department of Mathematics), Bd. Carol I, no. 8, Iaşi 700505, Romania

Received  August 2011 Revised  October 2011 Published  March 2012

One designs an internal stabilizing feedback controller, for the Navier-Stokes equations, which steers, in finite time, the initial value $X_o$ in $X_e+\mathcal{X}_s$, where $X_e$ is any equilibrium solution and $\mathcal{X}_s$ is a finite codimensional space, consisting of stable modes.
Citation: Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations & Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1
References:
[1]

A. V. Balakrishanan, "Applied Functional Analysis,", Second editon, 3 (1981).

[2]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, ESAIM COCV, 9 (2003), 197. doi: 10.1051/cocv:2003009.

[3]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite dimensional controllers,, Indiana Univ. Math. Journal, 53 (2004), 1443. doi: 10.1512/iumj.2004.53.2445.

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations,, Memoires AMS, 851 (2006).

[5]

V. Barbu, R. Triggiani and I. Lasiecka, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high and low-gain feedback controllers,, Nonlin. Anal., 64 (2006), 2704. doi: 10.1016/j.na.2005.09.012.

[6]

V. Barbu, Optimal stabilizable feedback controller for Navier-Stokes equations,, in, 513 (2010), 43.

[7]

V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Optimization and control of distributed systems,, Systems and Control Letters, 48 (2003), 161. doi: 10.1016/S0167-6911(02)00261-X.

[8]

V. Barbu, "Stabilization of the Navier-Stokes Flows,", Springer, (2010).

[9]

V. Barbu, I. Lasiecka and R. Triggiani, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients,, Nonlin. Anal. Ser. A: Theory Meth. and Appl., ().

[10]

M. Bedra, Feedback stabilization of the 2-D and 3-D Navier Stokes equations based on an extended system,, ESAIM COCV, 15 (2009), 934. doi: 10.1051/cocv:2008059.

[11]

M. Bedra, Lyapunov functions and local feedback stabilization of the Navier-Stokes equations,, SIAM J. Control Optimiz., 48 (2009), 1797. doi: 10.1137/070682630.

[12]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).

[13]

A. Fursikov, Stabilization for the 3D Navier-Stokes systems by feedback boundary control,, Discrete and Contin. Dyn. Syst., 10 (2004), 289. doi: 10.3934/dcds.2004.10.289.

[14]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theory,", Cambridge Univ. Press, (2000).

[15]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, J. Math. Pures et Appl. (9), 87 (2007), 627. doi: 10.1016/j.matpur.2007.04.002.

[16]

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD,, J. Scientific Computing, 15 (2000), 457.

[17]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier-Stokes equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 521.

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).

show all references

References:
[1]

A. V. Balakrishanan, "Applied Functional Analysis,", Second editon, 3 (1981).

[2]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, ESAIM COCV, 9 (2003), 197. doi: 10.1051/cocv:2003009.

[3]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite dimensional controllers,, Indiana Univ. Math. Journal, 53 (2004), 1443. doi: 10.1512/iumj.2004.53.2445.

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations,, Memoires AMS, 851 (2006).

[5]

V. Barbu, R. Triggiani and I. Lasiecka, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high and low-gain feedback controllers,, Nonlin. Anal., 64 (2006), 2704. doi: 10.1016/j.na.2005.09.012.

[6]

V. Barbu, Optimal stabilizable feedback controller for Navier-Stokes equations,, in, 513 (2010), 43.

[7]

V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Optimization and control of distributed systems,, Systems and Control Letters, 48 (2003), 161. doi: 10.1016/S0167-6911(02)00261-X.

[8]

V. Barbu, "Stabilization of the Navier-Stokes Flows,", Springer, (2010).

[9]

V. Barbu, I. Lasiecka and R. Triggiani, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients,, Nonlin. Anal. Ser. A: Theory Meth. and Appl., ().

[10]

M. Bedra, Feedback stabilization of the 2-D and 3-D Navier Stokes equations based on an extended system,, ESAIM COCV, 15 (2009), 934. doi: 10.1051/cocv:2008059.

[11]

M. Bedra, Lyapunov functions and local feedback stabilization of the Navier-Stokes equations,, SIAM J. Control Optimiz., 48 (2009), 1797. doi: 10.1137/070682630.

[12]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).

[13]

A. Fursikov, Stabilization for the 3D Navier-Stokes systems by feedback boundary control,, Discrete and Contin. Dyn. Syst., 10 (2004), 289. doi: 10.3934/dcds.2004.10.289.

[14]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theory,", Cambridge Univ. Press, (2000).

[15]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, J. Math. Pures et Appl. (9), 87 (2007), 627. doi: 10.1016/j.matpur.2007.04.002.

[16]

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD,, J. Scientific Computing, 15 (2000), 457.

[17]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier-Stokes equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 521.

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).

[1]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[2]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[3]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[4]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[5]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 289-314. doi: 10.3934/dcds.2004.10.289

[6]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[7]

Andrei Fursikov, Alexey V. Gorshkov. Certain questions of feedback stabilization for Navier-Stokes equations. Evolution Equations & Control Theory, 2012, 1 (1) : 109-140. doi: 10.3934/eect.2012.1.109

[8]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[9]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[10]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[11]

Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279

[12]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[13]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[14]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[15]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017149

[16]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[17]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[18]

Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159

[19]

Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031

[20]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

2016 Impact Factor: 0.826

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]