2011, 5(4): 747-769. doi: 10.3934/jmd.2011.5.747

Partially hyperbolic diffeomorphisms with compact center foliations

1. 

Department ofMathematical Sciences, The State University of New York, Binghamton, NY 13902, United States

Received  November 2011 Revised  February 2012 Published  March 2012

Let $f\colon M\to M$ be a partially hyperbolic diffeomorphism such that all of its center leaves are compact. We prove that Sullivan's example of a circle foliation that has arbitrary long leaves cannot be the center foliation of $f$. This is proved by thorough study of the accessible boundaries of the center-stable and the center-unstable leaves.
    Also we show that a finite cover of $f$ fibers over an Anosov toral automorphism if one of the following conditions is met:
  1. 1. the center foliation of $f$ has codimension 2, or
  2. 2. the center leaves of $f$ are simply connected leaves and the unstable foliation of $f$ is one-dimensional.
Citation: Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747
References:
[1]

V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems,, Phys. Rep., 75 (1981), 287. doi: 10.1016/0370-1573(81)90186-1.

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Thesis, (2011).

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475. doi: 10.1016/j.top.2004.10.009.

[4]

R. Bowen, Periodic points and measures for axiom A diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.

[5]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, in, (2004), 307.

[6]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541. doi: 10.3934/jmd.2008.2.541.

[7]

A. Candel and L. Conlon, "Foliations. I,", Graduate Studies in Mathematics, 23 (2000).

[8]

P. Carrasco, "Compact Dynamical Foliations,", Thesis, (2010).

[9]

Y. Coudene, Pictures of hyperbolic dynamical systems,, Notices Amer. Math. Soc., 53 (2006), 8.

[10]

R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact,, Topology, 16 (1977), 13. doi: 10.1016/0040-9383(77)90028-3.

[11]

D. B. A. Epstein, Periodic flows on three-manifolds,, Ann. of Math. (2), 95 (1972), 66. doi: 10.2307/1970854.

[12]

D. B. A. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265. doi: 10.5802/aif.607.

[13]

D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension $3$,, Ann. of Math. (2), 108 (1978), 539. doi: 10.2307/1971187.

[14]

J. Franks, Anosov diffeomorphisms,, in, (1968), 61.

[15]

K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 21 (2001), 801. doi: 10.1017/S0143385701001390.

[16]

J. G. Hocking and G. S. Young, "Topology,", Second edition, (1988).

[17]

R. Langevin, A list of questions about foliations,, in, 161 (1994), 59.

[18]

D. Montgomery, Pointwise periodic homeomorphisms,, Amer. J. Math., 59 (1937), 118. doi: 10.2307/2371565.

[19]

S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761. doi: 10.2307/2373372.

[20]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.

[21]

, F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures,, private communication., ().

[22]

D. Sullivan, A counterexample to the periodic orbit conjecture,, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5.

[23]

E. Vogt, Foliations of codimension 2 with all leaves compact,, Manuscripta Math., 18 (1976), 187. doi: 10.1007/BF01184305.

show all references

References:
[1]

V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems,, Phys. Rep., 75 (1981), 287. doi: 10.1016/0370-1573(81)90186-1.

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Thesis, (2011).

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475. doi: 10.1016/j.top.2004.10.009.

[4]

R. Bowen, Periodic points and measures for axiom A diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.

[5]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, in, (2004), 307.

[6]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541. doi: 10.3934/jmd.2008.2.541.

[7]

A. Candel and L. Conlon, "Foliations. I,", Graduate Studies in Mathematics, 23 (2000).

[8]

P. Carrasco, "Compact Dynamical Foliations,", Thesis, (2010).

[9]

Y. Coudene, Pictures of hyperbolic dynamical systems,, Notices Amer. Math. Soc., 53 (2006), 8.

[10]

R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact,, Topology, 16 (1977), 13. doi: 10.1016/0040-9383(77)90028-3.

[11]

D. B. A. Epstein, Periodic flows on three-manifolds,, Ann. of Math. (2), 95 (1972), 66. doi: 10.2307/1970854.

[12]

D. B. A. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265. doi: 10.5802/aif.607.

[13]

D. B. A. Epstein and E. Vogt, A counterexample to the periodic orbit conjecture in codimension $3$,, Ann. of Math. (2), 108 (1978), 539. doi: 10.2307/1971187.

[14]

J. Franks, Anosov diffeomorphisms,, in, (1968), 61.

[15]

K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 21 (2001), 801. doi: 10.1017/S0143385701001390.

[16]

J. G. Hocking and G. S. Young, "Topology,", Second edition, (1988).

[17]

R. Langevin, A list of questions about foliations,, in, 161 (1994), 59.

[18]

D. Montgomery, Pointwise periodic homeomorphisms,, Amer. J. Math., 59 (1937), 118. doi: 10.2307/2371565.

[19]

S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761. doi: 10.2307/2373372.

[20]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.

[21]

, F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures,, private communication., ().

[22]

D. Sullivan, A counterexample to the periodic orbit conjecture,, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5.

[23]

E. Vogt, Foliations of codimension 2 with all leaves compact,, Manuscripta Math., 18 (1976), 187. doi: 10.1007/BF01184305.

[1]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[2]

Yeshun Sun, Chung-Chun Yang. Buried points and lakes of Wada Continua. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 379-382. doi: 10.3934/dcds.2003.9.379

[3]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[4]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[5]

Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497

[6]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[7]

Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141

[8]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[9]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[10]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[11]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[12]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[13]

Yong Fang, Patrick Foulon, Boris Hasselblatt. Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows. Electronic Research Announcements, 2010, 17: 80-89. doi: 10.3934/era.2010.17.80

[14]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[15]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[16]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[17]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[18]

Patrik Nystedt, Johan Öinert. Simple skew category algebras associated with minimal partially defined dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4157-4171. doi: 10.3934/dcds.2013.33.4157

[19]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[20]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]