2011, 1(2): 189-230. doi: 10.3934/mcrf.2011.1.189

Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States

2. 

Department of Mathematics, Colorado State University, Ft. Collins, CO 80523, United States

Received  October 2010 Revised  April 2011 Published  June 2011

Exact controllability of a multilayer plate system with free boundary conditions are obtained by the method of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a three-layer "sandwich plate'' system due to Rao and Nakra. In the multilayer version, $m$ shear deformable layers alternate with $m+1$ layers modeled under Kirchoff plate assumptions. The resulting system involves $m+1$ Lamé systems coupled with a scalar Kirchhoff plate equation. The controls are taken to be distributed in a neighborhood of the boundary. This paper is the sequel to [2] in which only clamped and hinged boundary conditions are considered.
Citation: Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189
References:
[1]

S. W. Hansen, Several related models for multilayer sandwich plates,, Math. Models Methods Appl. Sci., 14 (2004), 1103. doi: 10.1142/S0218202504003568.

[2]

S. W. Hansen and O. Yu. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions,, to appear, ().

[3]

S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam,, Discrete Contin. Dynam. Syst., 2005 (): 365.

[4]

L. Hörmander, "Linear Partial Differential Equations,", Springer-Verlag, (1963).

[5]

O. Yu. Imanuvilov and J.-P. Puel, Global carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems,, Int. Math. Res. Not., 2003 (): 883. doi: 10.1155/S107379280321117X.

[6]

O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations,, Asymptotic Analysis, 32 (2002), 185.

[7]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem,, ESIAM COCV, 11 (2005), 1. doi: 10.1051/cocv:2004030.

[8]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the Lame system with the stress boundary condition,, Publ. Research Inst. Math Sciences, 43 (2007), 1023. doi: 10.2977/prims/1201012379.

[9]

V. Komornik, A new method of exact controllability in short time and applications,, Ann. Fac. Sci. Toulouse Math. (5), 10 (1989), 415.

[10]

H. Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981).

[11]

J. E. Lagnese, "Boundary Stabilization of Thin Plates,", SIAM Studies in Applied Mathematics, 10 ().

[12]

J. E. Lagnese and J.-L Lions, "Modelling, Analysis and Control of Thin Plates,", Recherches en Mathématiques Appliquées, 6 (1988).

[13]

I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta$|$\Sigma$ and homogeneous boundary displacement,, J. Diff. Eqns., 93 (1991), 62. doi: 10.1016/0022-0396(91)90022-2.

[14]

I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions,, Rocky Mountain J. Math., 30 (2000), 981. doi: 10.1216/rmjm/1021477256.

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, (French) [Exact control of the heat equation],, Séminaire sur les Équations aux Dérivées Partielles, (1995).

[16]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971).

[17]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001.

[18]

Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores,, J. Sound Vibr., 34 (1974), 309. doi: 10.1016/S0022-460X(74)80315-9.

[19]

R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam,, Systems Control Lett., 56 (2007), 558. doi: 10.1016/j.sysconle.2007.03.007.

[20]

M. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34,, Princeton University Press, (1981).

[21]

D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems,, J. Math. Pures Appl. (9), 75 (1996), 367.

[22]

X. Zhang, Exact controllability of the semilinear plate equations,, Asymptot. Anal., 27 (2001), 95.

[23]

X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities,, SIAM J. Control and Optimization, 39 (2000), 812. doi: 10.1137/S0363012999350298.

show all references

References:
[1]

S. W. Hansen, Several related models for multilayer sandwich plates,, Math. Models Methods Appl. Sci., 14 (2004), 1103. doi: 10.1142/S0218202504003568.

[2]

S. W. Hansen and O. Yu. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions,, to appear, ().

[3]

S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam,, Discrete Contin. Dynam. Syst., 2005 (): 365.

[4]

L. Hörmander, "Linear Partial Differential Equations,", Springer-Verlag, (1963).

[5]

O. Yu. Imanuvilov and J.-P. Puel, Global carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems,, Int. Math. Res. Not., 2003 (): 883. doi: 10.1155/S107379280321117X.

[6]

O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations,, Asymptotic Analysis, 32 (2002), 185.

[7]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem,, ESIAM COCV, 11 (2005), 1. doi: 10.1051/cocv:2004030.

[8]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the Lame system with the stress boundary condition,, Publ. Research Inst. Math Sciences, 43 (2007), 1023. doi: 10.2977/prims/1201012379.

[9]

V. Komornik, A new method of exact controllability in short time and applications,, Ann. Fac. Sci. Toulouse Math. (5), 10 (1989), 415.

[10]

H. Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981).

[11]

J. E. Lagnese, "Boundary Stabilization of Thin Plates,", SIAM Studies in Applied Mathematics, 10 ().

[12]

J. E. Lagnese and J.-L Lions, "Modelling, Analysis and Control of Thin Plates,", Recherches en Mathématiques Appliquées, 6 (1988).

[13]

I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta$|$\Sigma$ and homogeneous boundary displacement,, J. Diff. Eqns., 93 (1991), 62. doi: 10.1016/0022-0396(91)90022-2.

[14]

I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions,, Rocky Mountain J. Math., 30 (2000), 981. doi: 10.1216/rmjm/1021477256.

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, (French) [Exact control of the heat equation],, Séminaire sur les Équations aux Dérivées Partielles, (1995).

[16]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971).

[17]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001.

[18]

Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores,, J. Sound Vibr., 34 (1974), 309. doi: 10.1016/S0022-460X(74)80315-9.

[19]

R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam,, Systems Control Lett., 56 (2007), 558. doi: 10.1016/j.sysconle.2007.03.007.

[20]

M. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34,, Princeton University Press, (1981).

[21]

D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems,, J. Math. Pures Appl. (9), 75 (1996), 367.

[22]

X. Zhang, Exact controllability of the semilinear plate equations,, Asymptot. Anal., 27 (2001), 95.

[23]

X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities,, SIAM J. Control and Optimization, 39 (2000), 812. doi: 10.1137/S0363012999350298.

[1]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[2]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[3]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[4]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[5]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[6]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[7]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[8]

Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations & Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001

[9]

Alfredo Lorenzi, Vladimir G. Romanov. Recovering two Lamé kernels in a viscoelastic system. Inverse Problems & Imaging, 2011, 5 (2) : 431-464. doi: 10.3934/ipi.2011.5.431

[10]

Victor Isakov. Carleman estimates for some anisotropic elasticity systems and applications. Evolution Equations & Control Theory, 2012, 1 (1) : 141-154. doi: 10.3934/eect.2012.1.141

[11]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[12]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[13]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[14]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[15]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[16]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[17]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[18]

Tatsien Li, Zhiqiang Wang. A note on the exact controllability for nonautonomous hyperbolic systems. Communications on Pure & Applied Analysis, 2007, 6 (1) : 229-235. doi: 10.3934/cpaa.2007.6.229

[19]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[20]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]