2011, 1(1): 119-127. doi: 10.3934/mcrf.2011.1.119

Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068

2. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China

3. 

College of Economics, Sichuan Normal University, Chengdu 610066, China

Received  October 2010 Revised  January 2011 Published  March 2011

We consider the blow-up solutions of the Cauchy problem for the critical nonlinear Schrödinger equation with a repulsive harmonic potential. In terms of Merle and Tsutsumi's arguments as well as Carles' transform, the $L^2$-concentration property of radially symmetric blow-up solutions is obtained.
Citation: Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119
References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823. doi: 10.1137/S0036141002416936.

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential,, Math. Models Methods Appl. Sci., 12 (2002), 1513. doi: 10.1142/S0218202502002215.

[3]

T. Cazenave, "Semilinear Schrödinger Equations,", in, 10 (2003).

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension,, Phys. Rev. A., 38 (1988), 3837. doi: 10.1103/PhysRevA.38.3837.

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential,, Chinese Ann. Math. Ser. A, 26 (2005), 31.

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential,, Differential Integral Equations, 19 (2006), 761.

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,, Ann. of Math., 161 (2005), 157. doi: 10.4007/annals.2005.161.157.

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation,, J. Amer. Math. Soc., 19 (2005), 37. doi: 10.1090/S0894-0347-05-00499-6.

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation,, Invent. Math., 156 (2004), 565. doi: 10.1007/s00222-003-0346-z.

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation,, Comm. Math. Phys., 253 (2005), 675. doi: 10.1007/s00220-004-1198-0.

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Differential Equations, 84 (1990), 205. doi: 10.1016/0022-0396(90)90075-Z.

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255. doi: 10.1016/0022-0396(89)90123-X.

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation,, Math. Ann., 331 (2005), 577. doi: 10.1007/s00208-004-0596-0.

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149. doi: 10.1007/BF01626517.

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power,, Nonlinear Anal., 15 (1990), 719. doi: 10.1016/0362-546X(90)90088-X.

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length,, Phys. Lett. A, 247 (1998), 287. doi: 10.1016/S0375-9601(98)00583-0.

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567. doi: 10.1007/BF01208265.

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate,, J. Statist. Phys., 101 (2000), 731. doi: 10.1023/A:1026437923987.

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Comm. Partial Differential Equations, 30 (2005), 1429. doi: 10.1080/03605300500299539.

show all references

References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823. doi: 10.1137/S0036141002416936.

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential,, Math. Models Methods Appl. Sci., 12 (2002), 1513. doi: 10.1142/S0218202502002215.

[3]

T. Cazenave, "Semilinear Schrödinger Equations,", in, 10 (2003).

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension,, Phys. Rev. A., 38 (1988), 3837. doi: 10.1103/PhysRevA.38.3837.

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential,, Chinese Ann. Math. Ser. A, 26 (2005), 31.

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential,, Differential Integral Equations, 19 (2006), 761.

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,, Ann. of Math., 161 (2005), 157. doi: 10.4007/annals.2005.161.157.

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation,, J. Amer. Math. Soc., 19 (2005), 37. doi: 10.1090/S0894-0347-05-00499-6.

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation,, Invent. Math., 156 (2004), 565. doi: 10.1007/s00222-003-0346-z.

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation,, Comm. Math. Phys., 253 (2005), 675. doi: 10.1007/s00220-004-1198-0.

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Differential Equations, 84 (1990), 205. doi: 10.1016/0022-0396(90)90075-Z.

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255. doi: 10.1016/0022-0396(89)90123-X.

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation,, Math. Ann., 331 (2005), 577. doi: 10.1007/s00208-004-0596-0.

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149. doi: 10.1007/BF01626517.

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power,, Nonlinear Anal., 15 (1990), 719. doi: 10.1016/0362-546X(90)90088-X.

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length,, Phys. Lett. A, 247 (1998), 287. doi: 10.1016/S0375-9601(98)00583-0.

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567. doi: 10.1007/BF01208265.

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate,, J. Statist. Phys., 101 (2000), 731. doi: 10.1023/A:1026437923987.

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Comm. Partial Differential Equations, 30 (2005), 1429. doi: 10.1080/03605300500299539.

[1]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[2]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[3]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[4]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[5]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[6]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[7]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[8]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[9]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[10]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[11]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[12]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[13]

Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051

[14]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[15]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[16]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[17]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[18]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[19]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[20]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]