2011, 30(2): 509-535. doi: 10.3934/dcds.2011.30.509

Scale-invariant extinction time estimates for some singular diffusion equations

1. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914

2. 

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, United States

Received  July 2010 Revised  July 2010 Published  February 2011

We study three singular parabolic evolutions: the second-order total variation flow, the fourth-order total variation flow, and a fourth-order surface diffusion law. Each has the property that the solution becomes identically zero in finite time. We prove scale-invariant estimates for the extinction time, using a simple argument which combines an energy estimate with a suitable Sobolev-type inequality.
Citation: Yoshikazu Giga, Robert V. Kohn. Scale-invariant extinction time estimates for some singular diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 509-535. doi: 10.3934/dcds.2011.30.509
References:
[1]

F. Andreu, V. Caselles, J. I. Diaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516. doi: 10.1006/jfan.2001.3829.

[2]

F. Andreu-Vaillo, V. Caselles and J. M. Mazón, "Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,'', Progress in Mathematics \textbf{223}, 223 (2004).

[3]

M. Arisawa and Y. Giga, Anisotropic curvature flow in a very thin domain,, Indiana Univ. Math. J., 52 (2003), 257. doi: 10.1512/iumj.2003.52.2099.

[4]

H. Attouch and A. Damlamian, Application des méthodes de convexité et monotonie à l'étude de certaines équations quasi linéaires,, Proc. Roy. Soc. Edinburgh Sect. A, 79 (1977), 107.

[5]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'', Noordhoff, (1976).

[6]

P. Benilan and M. G. Crandall, The continuous dependence on $\varphi$ of solutions of $u_t-\Delta \varphi (u)=0$,, Indiana Univ. Math. J., 30 (1981), 161. doi: 10.1512/iumj.1981.30.30014.

[7]

J. Bergh and J. Löfström, "Interpolation Spaces: An Introduction,'', Grundlehren der Mathematischen Wissenschaften \textbf{223}, 223 (1976).

[8]

H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans les Espaces de Hilbert,'', North-Holland Mathematics Studies \textbf{5}, 5 (1973).

[9]

H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces,, J. Functional Analysis, 9 (1972), 63. doi: 10.1016/0022-1236(72)90014-6.

[10]

W.-L. Chan, A. Ramasubramaniam, V. B. Shenoy and E. Chason, Relaxation kinetics of nano-ripples on Cu(001) surfaces,, Phys. Rev. B, 70 (2004). doi: 10.1103/PhysRevB.70.245403.

[11]

E. DiBenedetto, "Degenerate Parabolic Equations,'', Springer-Verlag, (1993).

[12]

I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,'', Studies in Mathematics and its Applications \textbf{1}, 1 (1976).

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature III,, J. Geom. Anal., 2 (1992), 121.

[14]

M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature,, Arch. Rational Mech. Anal., 141 (1998), 117. doi: 10.1007/s002050050075.

[15]

M.-H. Giga and Y. Giga, Very singular diffusion equations - second and fourth order problems,, Japan J. Indust. Appl. Math., 27 (2010), 323. doi: 10.1007/s13160-010-0020-y.

[16]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations,, in Adv. Stud. Pure Math., 31 (2001), 93.

[17]

M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions,'', Progress in Nonlinear Differential Equations and Their Applications \textbf{79}, 79 (2010).

[18]

Y. Giga, M. Ohnuma and M.-H. Sato, On the strong maximum principle and the large time behavior of generalized mean curvature flow with the Neumann boundary condition,, J. Differential Equations, 154 (1999), 107.

[19]

Y. Giga and K. Yama-uchi, On a lower bound for the extinction time of surfaces moved by mean curvature,, Calc. Var. Partial Differential Equations, 1 (1993), 417.

[20]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,'', Monographs in Mathematics \textbf{80}, 80 (1984).

[21]

J. Hager and H. Spohn, Self-similar morphology and dynamics of periodic surface profiles below the roughening transition,, Surf. Sci., 324 (1995), 365. doi: 10.1016/0039-6028(94)00771-3.

[22]

Y. Kashima, A subdifferential formulation of fourth order singular diffusion equations,, Adv. Math. Sci. Appl., 14 (2004), 49.

[23]

R. Kobayashi and Y. Giga, Equations with singular diffusivity,, J. Statist. Phys., 95 (1999), 1187. doi: 10.1023/A:1004570921372.

[24]

R. V. Kohn and F. Otto, Upper bounds on coarsening rates,, Comm. Math. Phys., 229 (2002), 375. doi: 10.1007/s00220-002-0693-4.

[25]

Y. Komura, Nonlinear semi-groups in Hilbert space,, J. Math. Soc. Japan, 19 (1967), 493. doi: 10.2969/jmsj/01940493.

[26]

A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340.

[27]

D. Margetis and R. V. Kohn, Continuum theory of interacting steps on crystal surfaces in $2+1$ dimensions,, Multiscale Model. Simul., 5 (2006), 729. doi: 10.1137/06065297X.

[28]

M. V. Ramana Murty, Morphological stability of nanostructures,, Phys. Rev. B, 62 (2000), 17004. doi: 10.1103/PhysRevB.62.17004.

[29]

M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface,, Phys. Rev. B, 42 (1990), 5013. doi: 10.1103/PhysRevB.42.5013.

[30]

A. Rettori and J. Villain, Flattening of grooves on a crystal surface: A method of investigation of surface roughness,, J. Phys. France, 49 (1988), 257. doi: 10.1051/jphys:01988004902025700.

[31]

V. B. Shenoy, A. Ramasubramaniam and L. B. Freund, A variational approach to nonlinear dynamics of nanoscale surface modulations,, Surf. Sci., 529 (2003), 365. doi: 10.1016/S0039-6028(03)00276-0.

[32]

V. B. Shenoy, A. Ramasubramaniam, H. Ramanarayan, D. T. Tambe, W.-L. Chan and E. Chason, Influence of step-edge barriers on the morphological relaxation of nanoscale ripples on crystal surfaces,, Phys. Rev. Lett., 92 (2004). doi: 10.1103/PhysRevLett.92.256101.

[33]

N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, "Analysis and Geometry on Groups,'', Cambridge Tracts in Mathematics \textbf{100}, 100 (1992).

[34]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type,'', Oxford Lecture Series in Mathematics and its Applications \textbf{33}, 33 (2006).

[35]

J. Watanabe, Approximation of nonlinear problems of a certain type,, in, 1 (1979), 147.

show all references

References:
[1]

F. Andreu, V. Caselles, J. I. Diaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516. doi: 10.1006/jfan.2001.3829.

[2]

F. Andreu-Vaillo, V. Caselles and J. M. Mazón, "Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,'', Progress in Mathematics \textbf{223}, 223 (2004).

[3]

M. Arisawa and Y. Giga, Anisotropic curvature flow in a very thin domain,, Indiana Univ. Math. J., 52 (2003), 257. doi: 10.1512/iumj.2003.52.2099.

[4]

H. Attouch and A. Damlamian, Application des méthodes de convexité et monotonie à l'étude de certaines équations quasi linéaires,, Proc. Roy. Soc. Edinburgh Sect. A, 79 (1977), 107.

[5]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'', Noordhoff, (1976).

[6]

P. Benilan and M. G. Crandall, The continuous dependence on $\varphi$ of solutions of $u_t-\Delta \varphi (u)=0$,, Indiana Univ. Math. J., 30 (1981), 161. doi: 10.1512/iumj.1981.30.30014.

[7]

J. Bergh and J. Löfström, "Interpolation Spaces: An Introduction,'', Grundlehren der Mathematischen Wissenschaften \textbf{223}, 223 (1976).

[8]

H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans les Espaces de Hilbert,'', North-Holland Mathematics Studies \textbf{5}, 5 (1973).

[9]

H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces,, J. Functional Analysis, 9 (1972), 63. doi: 10.1016/0022-1236(72)90014-6.

[10]

W.-L. Chan, A. Ramasubramaniam, V. B. Shenoy and E. Chason, Relaxation kinetics of nano-ripples on Cu(001) surfaces,, Phys. Rev. B, 70 (2004). doi: 10.1103/PhysRevB.70.245403.

[11]

E. DiBenedetto, "Degenerate Parabolic Equations,'', Springer-Verlag, (1993).

[12]

I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,'', Studies in Mathematics and its Applications \textbf{1}, 1 (1976).

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature III,, J. Geom. Anal., 2 (1992), 121.

[14]

M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature,, Arch. Rational Mech. Anal., 141 (1998), 117. doi: 10.1007/s002050050075.

[15]

M.-H. Giga and Y. Giga, Very singular diffusion equations - second and fourth order problems,, Japan J. Indust. Appl. Math., 27 (2010), 323. doi: 10.1007/s13160-010-0020-y.

[16]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations,, in Adv. Stud. Pure Math., 31 (2001), 93.

[17]

M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions,'', Progress in Nonlinear Differential Equations and Their Applications \textbf{79}, 79 (2010).

[18]

Y. Giga, M. Ohnuma and M.-H. Sato, On the strong maximum principle and the large time behavior of generalized mean curvature flow with the Neumann boundary condition,, J. Differential Equations, 154 (1999), 107.

[19]

Y. Giga and K. Yama-uchi, On a lower bound for the extinction time of surfaces moved by mean curvature,, Calc. Var. Partial Differential Equations, 1 (1993), 417.

[20]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,'', Monographs in Mathematics \textbf{80}, 80 (1984).

[21]

J. Hager and H. Spohn, Self-similar morphology and dynamics of periodic surface profiles below the roughening transition,, Surf. Sci., 324 (1995), 365. doi: 10.1016/0039-6028(94)00771-3.

[22]

Y. Kashima, A subdifferential formulation of fourth order singular diffusion equations,, Adv. Math. Sci. Appl., 14 (2004), 49.

[23]

R. Kobayashi and Y. Giga, Equations with singular diffusivity,, J. Statist. Phys., 95 (1999), 1187. doi: 10.1023/A:1004570921372.

[24]

R. V. Kohn and F. Otto, Upper bounds on coarsening rates,, Comm. Math. Phys., 229 (2002), 375. doi: 10.1007/s00220-002-0693-4.

[25]

Y. Komura, Nonlinear semi-groups in Hilbert space,, J. Math. Soc. Japan, 19 (1967), 493. doi: 10.2969/jmsj/01940493.

[26]

A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340.

[27]

D. Margetis and R. V. Kohn, Continuum theory of interacting steps on crystal surfaces in $2+1$ dimensions,, Multiscale Model. Simul., 5 (2006), 729. doi: 10.1137/06065297X.

[28]

M. V. Ramana Murty, Morphological stability of nanostructures,, Phys. Rev. B, 62 (2000), 17004. doi: 10.1103/PhysRevB.62.17004.

[29]

M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface,, Phys. Rev. B, 42 (1990), 5013. doi: 10.1103/PhysRevB.42.5013.

[30]

A. Rettori and J. Villain, Flattening of grooves on a crystal surface: A method of investigation of surface roughness,, J. Phys. France, 49 (1988), 257. doi: 10.1051/jphys:01988004902025700.

[31]

V. B. Shenoy, A. Ramasubramaniam and L. B. Freund, A variational approach to nonlinear dynamics of nanoscale surface modulations,, Surf. Sci., 529 (2003), 365. doi: 10.1016/S0039-6028(03)00276-0.

[32]

V. B. Shenoy, A. Ramasubramaniam, H. Ramanarayan, D. T. Tambe, W.-L. Chan and E. Chason, Influence of step-edge barriers on the morphological relaxation of nanoscale ripples on crystal surfaces,, Phys. Rev. Lett., 92 (2004). doi: 10.1103/PhysRevLett.92.256101.

[33]

N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, "Analysis and Geometry on Groups,'', Cambridge Tracts in Mathematics \textbf{100}, 100 (1992).

[34]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type,'', Oxford Lecture Series in Mathematics and its Applications \textbf{33}, 33 (2006).

[35]

J. Watanabe, Approximation of nonlinear problems of a certain type,, in, 1 (1979), 147.

[1]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[2]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[3]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[4]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[5]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[6]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[7]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

[8]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[9]

Florian Krügel. Some properties of minimizers of a variational problem involving the total variation functional. Communications on Pure & Applied Analysis, 2015, 14 (1) : 341-360. doi: 10.3934/cpaa.2015.14.341

[10]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems & Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[11]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[12]

Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167

[13]

Konstantinos Papafitsoros, Kristian Bredies. A study of the one dimensional total generalised variation regularisation problem. Inverse Problems & Imaging, 2015, 9 (2) : 511-550. doi: 10.3934/ipi.2015.9.511

[14]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems & Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[15]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[16]

Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129

[17]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[18]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[19]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[20]

Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems & Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]