2011, 5(1): 23-36. doi: 10.3934/amc.2011.5.23

Construction of self-dual codes with an automorphism of order $p$

1. 

Department of Mathematics, Yonsei University, 134 Shinchon-dong, Seodaemun-Gu, Seoul 120-749, South Korea, South Korea

2. 

Department of Mathematics, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea, South Korea

Received  April 2010 Revised  December 2010 Published  February 2011

We develop a construction method for finding self-dual codes with an automorphism of order $p$ with $c$ independent $p$-cycles. In more detail, we construct a self-dual code with an automorphism of type $p-(c,f+2)$ and length $n+2$ from a self-dual code with an automorphism of type $p-(c,f)$ and length $n$, where an automorphism of type $p-(c, f)$ is that of order $p$ with $c$ independent cycles and $f$ fixed points. Using this construction, we find three new inequivalent extremal self-dual $[54, 27, 10]$ codes with an automorphism of type $7-(7,5)$ and two new inequivalent extremal self-dual $[58, 29, 10]$ codes with an automorphism of of type $7-(8,2)$. We also obtain an extremal self-dual $[40, 20, 8]$ code with an automorphism of type $3-(10, 10)$, which is constructed from an extremal self-dual $[38, 19, 8]$ code of type $3-(10,8)$, and at least 482 inequivalent extremal self-dual $[58,29,10]$ codes with an automorphism of type $3-(18,4)$, which is constructed from an extremal self-dual $[54, 27, 10]$ code of type $3-(18,0);$ we note that the extremality is preserved.
Citation: Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23
References:
[1]

I. Bouyukliev and S. Bouyuklieva, Some new extremal self-dual codes with lengths $44, 50, 54,$ and $58$,, IEEE Trans. Inform. Theory, 44 (1998), 809. doi: 10.1109/18.661526.

[2]

S. Bouyuklieva, A method for constructing self-dual codes with an automorphism of order 2,, IEEE Trans. Inform. Theory, 46 (2000), 496. doi: 10.1109/18.825812.

[3]

S. Bouyuklieva and I. Bouyukliev, Extremal self-dual codes with an automorphism of order 2,, IEEE Trans. Inform. Theory, 44 (1998), 323. doi: 10.1109/18.651059.

[4]

S. Bouyuklieva and P. Östergård, New constructions of optimal self-dual binary codes of length $54$,, Des. Codes Crypt., 41 (2006), 101. doi: 10.1007/s10623-006-0018-2.

[5]

S. Bouyuklieva, R. Russeva and N. Yankov, On the structure of binary self-dual codes having an automorphism of order a square of an odd prime,, IEEE Trans. Inform. Theory, 51 (2005), 3678. doi: 10.1109/TIT.2005.855616.

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1991), 1319. doi: 10.1109/18.59931.

[7]

R. Dontcheva and M. Harada, Extremal self-dual codes of length 62 and related extremal self-dual codes,, IEEE Trans. Inform. Theory, 48 (2002), 2060. doi: 10.1109/TIT.2002.1013144.

[8]

R. Dontcheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7,, Algebra Eng. Commun. Comput. (AAECC J.), 14 (2003), 75.

[9]

S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self-dual codes,, IEEE Trans. Inform. Theory, 43 (1997), 2036. doi: 10.1109/18.641574.

[10]

T. A. Gulliver, J.-L. Kim and Y. Lee, New MDS and near-MDS self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4354. doi: 10.1109/TIT.2008.928297.

[11]

M. Harada, T. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to 62,, Discrete Math., 188 (1998), 127. doi: 10.1016/S0012-365X(97)00250-1.

[12]

M. Harada and H. Kimura, On extremal self-dual codes,, Math. J. Okayama Univ., 37 (1995), 1.

[13]

W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length $48$,, IEEE Trans. Inform. Theory, 28 (1982), 511. doi: 10.1109/TIT.1982.1056499.

[14]

W. C. Huffman, The $[52,26,10]$ binary self-dual codes with an automorphism of order $7$,, Finite Fields Appl., 7 (2001), 341. doi: 10.1006/ffta.2000.0295.

[15]

J.-L. Kim, New extremal self-dual codes of length $36$, $38$, and $58$,, IEEE Trans. Inform. Theory, 47 (2001), 386. doi: 10.1109/18.904540.

[16]

J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields,, J. Combin. Theory Ser. A, 105 (2004), 79. doi: 10.1016/j.jcta.2003.10.003.

[17]

V. Pless, A classification of self-orthogonal codes over $GF(2)$,, Discrete Math., 3 (1972), 209. doi: 10.1016/0012-365X(72)90034-9.

[18]

V. Pless, N. J. A. Sloane and H. N. Ward, Ternary codes of minimum weight 6 and the classification of the self-dual codes of length 20,, IEEE Trans. Inform. Theory, 26 (1980), 306. doi: 10.1109/TIT.1980.1056195.

[19]

H.-P. Tsai, Existence of certain extremal self-dual codes,, IEEE Trans. Inform. Theory, 38 (1992), 501. doi: 10.1109/18.119711.

[20]

H.-P. Tsai and Y. J. Jiang, Some new extremal self-dual $[58,29,10]$ codes,, IEEE Trans. Inform. Theory, 44 (1998), 813. doi: 10.1109/18.661527.

[21]

V. Y. Yorgov, Binary self-dual codes with automorphisms of an odd order,, Problems Inform. Trans., 19 (1983), 260.

[22]

V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56,, IEEE Trans. Inform. Theory, 33 (1987), 77. doi: 10.1109/TIT.1987.1057273.

[23]

S. Zhang and S. Li, Some new extremal self-dual codes with lengths $42, 44, 52,$ and $58$,, Discrete Math., 238 (2001), 147. doi: 10.1016/S0012-365X(00)00420-9.

show all references

References:
[1]

I. Bouyukliev and S. Bouyuklieva, Some new extremal self-dual codes with lengths $44, 50, 54,$ and $58$,, IEEE Trans. Inform. Theory, 44 (1998), 809. doi: 10.1109/18.661526.

[2]

S. Bouyuklieva, A method for constructing self-dual codes with an automorphism of order 2,, IEEE Trans. Inform. Theory, 46 (2000), 496. doi: 10.1109/18.825812.

[3]

S. Bouyuklieva and I. Bouyukliev, Extremal self-dual codes with an automorphism of order 2,, IEEE Trans. Inform. Theory, 44 (1998), 323. doi: 10.1109/18.651059.

[4]

S. Bouyuklieva and P. Östergård, New constructions of optimal self-dual binary codes of length $54$,, Des. Codes Crypt., 41 (2006), 101. doi: 10.1007/s10623-006-0018-2.

[5]

S. Bouyuklieva, R. Russeva and N. Yankov, On the structure of binary self-dual codes having an automorphism of order a square of an odd prime,, IEEE Trans. Inform. Theory, 51 (2005), 3678. doi: 10.1109/TIT.2005.855616.

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1991), 1319. doi: 10.1109/18.59931.

[7]

R. Dontcheva and M. Harada, Extremal self-dual codes of length 62 and related extremal self-dual codes,, IEEE Trans. Inform. Theory, 48 (2002), 2060. doi: 10.1109/TIT.2002.1013144.

[8]

R. Dontcheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7,, Algebra Eng. Commun. Comput. (AAECC J.), 14 (2003), 75.

[9]

S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self-dual codes,, IEEE Trans. Inform. Theory, 43 (1997), 2036. doi: 10.1109/18.641574.

[10]

T. A. Gulliver, J.-L. Kim and Y. Lee, New MDS and near-MDS self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4354. doi: 10.1109/TIT.2008.928297.

[11]

M. Harada, T. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to 62,, Discrete Math., 188 (1998), 127. doi: 10.1016/S0012-365X(97)00250-1.

[12]

M. Harada and H. Kimura, On extremal self-dual codes,, Math. J. Okayama Univ., 37 (1995), 1.

[13]

W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length $48$,, IEEE Trans. Inform. Theory, 28 (1982), 511. doi: 10.1109/TIT.1982.1056499.

[14]

W. C. Huffman, The $[52,26,10]$ binary self-dual codes with an automorphism of order $7$,, Finite Fields Appl., 7 (2001), 341. doi: 10.1006/ffta.2000.0295.

[15]

J.-L. Kim, New extremal self-dual codes of length $36$, $38$, and $58$,, IEEE Trans. Inform. Theory, 47 (2001), 386. doi: 10.1109/18.904540.

[16]

J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields,, J. Combin. Theory Ser. A, 105 (2004), 79. doi: 10.1016/j.jcta.2003.10.003.

[17]

V. Pless, A classification of self-orthogonal codes over $GF(2)$,, Discrete Math., 3 (1972), 209. doi: 10.1016/0012-365X(72)90034-9.

[18]

V. Pless, N. J. A. Sloane and H. N. Ward, Ternary codes of minimum weight 6 and the classification of the self-dual codes of length 20,, IEEE Trans. Inform. Theory, 26 (1980), 306. doi: 10.1109/TIT.1980.1056195.

[19]

H.-P. Tsai, Existence of certain extremal self-dual codes,, IEEE Trans. Inform. Theory, 38 (1992), 501. doi: 10.1109/18.119711.

[20]

H.-P. Tsai and Y. J. Jiang, Some new extremal self-dual $[58,29,10]$ codes,, IEEE Trans. Inform. Theory, 44 (1998), 813. doi: 10.1109/18.661527.

[21]

V. Y. Yorgov, Binary self-dual codes with automorphisms of an odd order,, Problems Inform. Trans., 19 (1983), 260.

[22]

V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56,, IEEE Trans. Inform. Theory, 33 (1987), 77. doi: 10.1109/TIT.1987.1057273.

[23]

S. Zhang and S. Li, Some new extremal self-dual codes with lengths $42, 44, 52,$ and $58$,, Discrete Math., 238 (2001), 147. doi: 10.1016/S0012-365X(00)00420-9.

[1]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[2]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[3]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[4]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[5]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[6]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[7]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[8]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[9]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[10]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[11]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[12]

W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57

[13]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[14]

Nikolay Yankov. Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7. Advances in Mathematics of Communications, 2014, 8 (1) : 73-81. doi: 10.3934/amc.2014.8.73

[15]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[16]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[17]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[18]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[19]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[20]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (6)

[Back to Top]