2011, 7(1): 87-101. doi: 10.3934/jimo.2011.7.87

Cluster synchronization for linearly coupled complex networks

1. 

The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, Tongji University, Shanghai, 200092, China

2. 

Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

3. 

Center for Computational Systems Biology, Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Received  December 2009 Revised  October 2010 Published  January 2011

In this paper, the cluster synchronization for an array of linearly coupled identical chaotic systems is investigated. New coupling schemes (or coupling matrices) are proposed, by which global cluster synchronization of linearly coupled chaotic systems can be realized. Here, the number and the size of clusters (or groups) can be arbitrary. Some sufficient criteria to ensure global cluster synchronization are derived. Moreover, for any given coupling matrix, new coupled complex networks with adaptive coupling strengths are proposed, which can synchronize coupled chaotic systems by clusters. Numerical simulations are finally given to show the validity of the theoretical results.
Citation: Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87
References:
[1]

R. Albert and A. Barabsi, Statistical mechanics of complex networks,, Rev. Modern Phys., 74 (2002), 47. doi: 10.1103/RevModPhys.74.47.

[2]

I. Belykh, V. Belykh and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.036216.

[3]

I. Belykh, V. Belykh, K. Nevidin and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems,, Chaos, 13 (2003), 165. doi: 10.1063/1.1514202.

[4]

V. Belykh, I. Belykh and M. Hasler, Connected graph stability method for synchronized coupled chaotic systems,, Physica D, 195 (2004), 159. doi: 10.1016/j.physd.2004.03.012.

[5]

S. Boccaletti, A. Farini and F. Arecchi, Adaptive synchronization of chaos for secure communication,, Phys. Rev. E, 55 (1997), 4979. doi: 10.1103/PhysRevE.55.4979.

[6]

K. Kaneko, Relevance of dynamic clustering to biological networks,, Physica D, 75 (1994). doi: 10.1016/0167-2789(94)90274-7.

[7]

Y. Kuang, "Delay Differential Equations in Populaiton Dynamics,", Academic Press, (1993).

[8]

Y. Li and S. Chen, Optimal traffic signal control for an $M\times N$ traffic network,, Journal of Industrial and Management Optimization, 4 (2008), 661.

[9]

T. Liao and S. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications,, Chaos, 11 (2000), 1387. doi: 10.1016/S0960-0779(99)00051-X.

[10]

X. Liu and T. Chen, Exponential synchronization of the linearly coupled dynamical networks with delays,, Chin. Ann. Math. Ser. B, 28 (2007), 737. doi: 10.1007/s11401-006-0194-4.

[11]

W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays,, IEEE Trans. Circuits Syst.-I, 51 (2004), 2491.

[12]

W. Lu and T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems,, Physica D, 213 (2006), 214. doi: 10.1016/j.physd.2005.11.009.

[13]

Z. Ma, Z. Liu and G. Zhang, A new method to realize cluster synchronization in connected chaotic networks,, Chao, 16 (2006).

[14]

R. Mirollo and S. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098.

[15]

M. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167. doi: 10.1137/S003614450342480.

[16]

L. Pecora and T. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109.

[17]

A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications,, Nonlinearity, 16 (2003), 1597. doi: 10.1088/0951-7715/16/5/303.

[18]

W. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equations,, Physica D, 197 (2004), 375. doi: 10.1016/j.physd.2004.07.011.

[19]

N. Rulkov, Images of synchronized chaos: experiments with circuits,, Chaos, 6 (1996), 262. doi: 10.1063/1.166174.

[20]

S. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268. doi: 10.1038/35065725.

[21]

X. Wang and G. Chen, Synchronization in scale-free dynamical networks: robustness and fragility,, IEEE Trans. Circuits Syst. -I, 49 (2002), 54.

[22]

X. Wang and G. Chen, Synchronization in small-world dynamical networks,, Int. J. Bifur. Chaos, 12 (2002), 187. doi: 10.1142/S0218127402004292.

[23]

D. Watts and S. Strogatz, Collective dynamics of small-world,, Nature, 393 (1998), 440. doi: 10.1038/30918.

[24]

G. Wei and Y. Q. Jia, Synchronization-based image edge detection,, Europhys. Lett., 59 (2002), 814. doi: 10.1209/epl/i2002-00115-8.

[25]

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,, Nonlinearity, 18 (2005), 1057. doi: 10.1088/0951-7715/18/3/007.

[26]

C. Wu and L. Chua, Synchronization in an array of linearly coupled dynamical systems,, IEEE Trans. Circuits Syst.-I, 42 (1995), 430.

[27]

Q. Xie, G. Chen and E. Bollt, Hybrid chaos synchronization and its application in information processing,, Math. Comput. Model., 35 (2002), 145. doi: 10.1016/S0895-7177(01)00157-1.

[28]

T. Yang and L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication,, Int. J. Bifur. Chaos, 7 (1997), 645. doi: 10.1142/S0218127497000443.

show all references

References:
[1]

R. Albert and A. Barabsi, Statistical mechanics of complex networks,, Rev. Modern Phys., 74 (2002), 47. doi: 10.1103/RevModPhys.74.47.

[2]

I. Belykh, V. Belykh and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.036216.

[3]

I. Belykh, V. Belykh, K. Nevidin and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems,, Chaos, 13 (2003), 165. doi: 10.1063/1.1514202.

[4]

V. Belykh, I. Belykh and M. Hasler, Connected graph stability method for synchronized coupled chaotic systems,, Physica D, 195 (2004), 159. doi: 10.1016/j.physd.2004.03.012.

[5]

S. Boccaletti, A. Farini and F. Arecchi, Adaptive synchronization of chaos for secure communication,, Phys. Rev. E, 55 (1997), 4979. doi: 10.1103/PhysRevE.55.4979.

[6]

K. Kaneko, Relevance of dynamic clustering to biological networks,, Physica D, 75 (1994). doi: 10.1016/0167-2789(94)90274-7.

[7]

Y. Kuang, "Delay Differential Equations in Populaiton Dynamics,", Academic Press, (1993).

[8]

Y. Li and S. Chen, Optimal traffic signal control for an $M\times N$ traffic network,, Journal of Industrial and Management Optimization, 4 (2008), 661.

[9]

T. Liao and S. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications,, Chaos, 11 (2000), 1387. doi: 10.1016/S0960-0779(99)00051-X.

[10]

X. Liu and T. Chen, Exponential synchronization of the linearly coupled dynamical networks with delays,, Chin. Ann. Math. Ser. B, 28 (2007), 737. doi: 10.1007/s11401-006-0194-4.

[11]

W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays,, IEEE Trans. Circuits Syst.-I, 51 (2004), 2491.

[12]

W. Lu and T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems,, Physica D, 213 (2006), 214. doi: 10.1016/j.physd.2005.11.009.

[13]

Z. Ma, Z. Liu and G. Zhang, A new method to realize cluster synchronization in connected chaotic networks,, Chao, 16 (2006).

[14]

R. Mirollo and S. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098.

[15]

M. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167. doi: 10.1137/S003614450342480.

[16]

L. Pecora and T. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109.

[17]

A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications,, Nonlinearity, 16 (2003), 1597. doi: 10.1088/0951-7715/16/5/303.

[18]

W. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equations,, Physica D, 197 (2004), 375. doi: 10.1016/j.physd.2004.07.011.

[19]

N. Rulkov, Images of synchronized chaos: experiments with circuits,, Chaos, 6 (1996), 262. doi: 10.1063/1.166174.

[20]

S. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268. doi: 10.1038/35065725.

[21]

X. Wang and G. Chen, Synchronization in scale-free dynamical networks: robustness and fragility,, IEEE Trans. Circuits Syst. -I, 49 (2002), 54.

[22]

X. Wang and G. Chen, Synchronization in small-world dynamical networks,, Int. J. Bifur. Chaos, 12 (2002), 187. doi: 10.1142/S0218127402004292.

[23]

D. Watts and S. Strogatz, Collective dynamics of small-world,, Nature, 393 (1998), 440. doi: 10.1038/30918.

[24]

G. Wei and Y. Q. Jia, Synchronization-based image edge detection,, Europhys. Lett., 59 (2002), 814. doi: 10.1209/epl/i2002-00115-8.

[25]

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,, Nonlinearity, 18 (2005), 1057. doi: 10.1088/0951-7715/18/3/007.

[26]

C. Wu and L. Chua, Synchronization in an array of linearly coupled dynamical systems,, IEEE Trans. Circuits Syst.-I, 42 (1995), 430.

[27]

Q. Xie, G. Chen and E. Bollt, Hybrid chaos synchronization and its application in information processing,, Math. Comput. Model., 35 (2002), 145. doi: 10.1016/S0895-7177(01)00157-1.

[28]

T. Yang and L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication,, Int. J. Bifur. Chaos, 7 (1997), 645. doi: 10.1142/S0218127497000443.

[1]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[2]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[3]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[4]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[5]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[6]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[7]

Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1

[8]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[9]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[10]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[11]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[12]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[13]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[14]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[15]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[16]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[17]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[18]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[19]

Shuang Liu, Wenxue Li. Outer synchronization of delayed coupled systems on networks without strong connectedness: A hierarchical method. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 837-859. doi: 10.3934/dcdsb.2018045

[20]

Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada. Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks & Heterogeneous Media, 2012, 7 (3) : i-iii. doi: 10.3934/nhm.2012.7.3i

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]