2011, 4(1): 333-344. doi: 10.3934/krm.2011.4.333

On the Kac model for the Landau equation

1. 

Laboratoire de Mathématiques, Université Paris-Sud 11, bât. 425, 91405 Orsay, France

2. 

Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza - Roma, P.le A. Moro, 5 00185 Roma, Italy, Italy

Received  October 2010 Revised  October 2010 Published  January 2011

We introduce a $N$-particle system which approximates, in the mean-field limit, the solutions of the Landau equation with Coulomb singularity. This model plays the same role as the Kac's model for the homogeneous Boltzmann equation. We use compactness arguments following [11].
Citation: Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333
References:
[1]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian),, Mat. Sb., 181 (1992), 435.

[2]

R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'', John Wiley & Sons, (1975).

[3]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications,, Comm. Partial Differential Equations, 25 (2000), 261. doi: 10.1080/03605300008821513.

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness,, Comm. Partial Differential Equations, 25 (2000), 179. doi: 10.1080/03605300008821512.

[5]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions,, J. Stat. Phys., 89 (1997), 751. doi: 10.1007/BF02765543.

[6]

M. Kac, Foundations of kinetic theory,, in, (1956).

[7]

A. I. Khinchin, "Mathematical Foundations of Information Theory,", New York: Dover, (1957).

[8]

L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10,", Pergamon Press, (1981).

[9]

R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit,, J. Stat. Phys., 136 (2009), 1105. doi: 10.1007/s10955-009-9820-3.

[10]

M. Pulvirenti, The weak-coupling limit of large classical and quantum systems,, in, (2006).

[11]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106.

show all references

References:
[1]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian),, Mat. Sb., 181 (1992), 435.

[2]

R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'', John Wiley & Sons, (1975).

[3]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications,, Comm. Partial Differential Equations, 25 (2000), 261. doi: 10.1080/03605300008821513.

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness,, Comm. Partial Differential Equations, 25 (2000), 179. doi: 10.1080/03605300008821512.

[5]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions,, J. Stat. Phys., 89 (1997), 751. doi: 10.1007/BF02765543.

[6]

M. Kac, Foundations of kinetic theory,, in, (1956).

[7]

A. I. Khinchin, "Mathematical Foundations of Information Theory,", New York: Dover, (1957).

[8]

L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10,", Pergamon Press, (1981).

[9]

R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit,, J. Stat. Phys., 136 (2009), 1105. doi: 10.1007/s10955-009-9820-3.

[10]

M. Pulvirenti, The weak-coupling limit of large classical and quantum systems,, in, (2006).

[11]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106.

[1]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[2]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[3]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[4]

Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic & Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1

[5]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[6]

Nicolas Fournier. Particle approximation of some Landau equations. Kinetic & Related Models, 2009, 2 (3) : 451-464. doi: 10.3934/krm.2009.2.451

[7]

Cédric Bernardin, Valeria Ricci. A simple particle model for a system of coupled equations with absorbing collision term. Kinetic & Related Models, 2011, 4 (3) : 633-668. doi: 10.3934/krm.2011.4.633

[8]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[9]

Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025

[10]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[11]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[12]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[13]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[14]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[15]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[16]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

[17]

Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks & Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631

[18]

Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks & Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127

[19]

Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic & Related Models, 2017, 10 (1) : 215-237. doi: 10.3934/krm.2017009

[20]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]