
Previous Article
Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks
 MBE Home
 This Issue

Next Article
A note on the use of influenza vaccination strategies when supply is limited
Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza
1.  Department of Mathematics, University of Florida, Gainesville, FL 32611, United States 
2.  Department of Mathematics, Texas A&M University, College Station, TX 77843, United States 
3.  Department of Mathematics, Spelman College, Atlanta, GA 30314, United States 
4.  School of Human Evolution and Social Change, Mathematical, Computational and Modeling Science Center, Arizona State University, Tempe, AZ 85287, United States, United States 
5.  Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287 
References:
[1] 
L. Altman, "Many Swine Flu Cases Have no Fever,", New York Times, (2009). 
[2] 
R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991). 
[3] 
I. G. Barr, J. McCauley, N. Cox, R. Daniels, O. G. Engelhardt, K. Fukuda, G. Grohmann, A. Hay, A. Kelso, A. Klimov, T. Odagiri, D. Smith, C. Russell, M. Tashiro, R. Webby, J. Wood, Z. Ye and W. Zhang, Epidemiological, antigenic and genetic characteristics of seasonal influenzaA(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season,, Vaccine, 28 (2010), 1156. doi: 10.1016/j.vaccine.2009.11.043. 
[4] 
H. Behnke, Optimal control of deterministic epidemics,, Optimal Control Application Methods, 21 (2000), 269. doi: 10.1002/oca.678. 
[5] 
W. I. B. Beveridge, "Influenza: The Last Great Plague. An Unfinished Story of Discovery,", Prodist, (1977). 
[6] 
F. Brauer, Z. Feng and C. CastilloChavez, Discrete epidemic models,, Mathematical Biosciences and Engineering, 7 (2010), 1. doi: 10.3934/mbe.2010.7.1. 
[7] 
C. CastilloChavez, H. Hethcote, V. Andreason, S. A. Levin and W. M. Liu, Crossimmunity in the dynamics of homogeneous and heterogeneous populations,, Mathematical Ecology, (1988), 303. 
[8] 
Centers for Disease Control and Prevention (CDC), Key facts about seasonal influenza,, \url{http://www.cdc.gov/flu/keyfacts.htm}., (). 
[9] 
Centers for Disease Control and Prevention (CDC), Monitoring influenza activity, including 2009 H1N1,, (2009), (2009). 
[10] 
Centers for Disease Control and Prevention (CDC), Serum crossreactive antibody response to a novel influenza A(H1N1) virus after vaccination with seasonal influenza vaccine,, MMWR Morb Mortal Wkly Rep, 58 (2009), 521. 
[11] 
G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission an prospects for control,, Epidem. Infect., 136 (2008), 852. doi: 10.1017/S0950268807009144. 
[12] 
G. Chowell, S. M. Bertozzi, M. A. Colchero, H. LopezGatell, C. AlpucheAranda, M. Hernandez and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza,, The New England Journal of Medicine, 361 (2009), 674. doi: 10.1056/NEJMoa0904023. 
[13] 
Brian Coburn, "Multispecies Influenza Models with Recombination,", Ph.D thesis, (2009). 
[14] 
R. Couch and J. Kasel, Immunity to influenza in man,, Annual Reviews in Microbiology, 37 (2002), 529. doi: 10.1146/annurev.mi.37.100183.002525. 
[15] 
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", John Wiley & Sons, (2000). 
[16] 
D. J. D. Earn, J. Dushoff and S. A. Levin, Ecology and evolution of the flu,, Trends Ecol. Evol., 17 (2002), 334. doi: 10.1016/S01695347(02)025028. 
[17] 
S. EchevarríaZuno, J. M. MejíaAranguré, A. V. MarObeso, C. GrajalesMuñiz, E. RoblesPérez, M. GonzálezLeón, M. C. OrtegaAlvarez, C. GonzalezBonilla, R. A. RascónPacheco and V. H. BorjaAburto, Infection and death from influenza A H1N1 virus in Mexico: A retrospective analysis,, Lancet, 374 (2009), 2072. doi: 10.1016/S01406736(09)61638X. 
[18] 
A. EstevesJaramillo, S. B. Omer and E. GonzalezDiaz, Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico,, Archives of Medical Research, 40 (2009), 705. doi: 10.1016/j.arcmed.2010.01.004. 
[19] 
W. H. Fleming and R. W. Rishel, "Deterministic and Stochasitic Optimal Control,", SpringerVerlag, (1994). 
[20] 
FLU. GOV, 2009 H1N1 vaccine doses allocated, ordered, and shipped by project area, (2010),, \url{http://www.flu.gov/individualfamily/vaccination/supply.html}., (). 
[21] 
M. A. HerreraValdez, M. CruzAponte and C. CastilloChavez, Multiple waves for the same pandemic: Local transportation and social distancing explain the dynamics of the A/H1N1 epidemic during 2009 in Mexico,, (2010)., (2010). 
[22] 
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a twostrain tuberculosis model,, Discrete and Continuous Dynamical SystemsSeries B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473. 
[23] 
P. Y. Lee, D. B. Matchar, D. A. Clements, J. Huber, J. D. Hamilton and E. D. Peterson, Economic analysis of influenza vaccination and antiviral treatment for healthy working adults,, Ann. Intern. Med., 137 (2002), 225. 
[24] 
S. Lee, G. Chowell and C. CastilloChavez, Optimal control of influenza pandemics: the role of antiviral treatment and isolation,, Journal of Theoretical Biology, 265 (2010), 136. doi: 10.1016/j.jtbi.2010.04.003. 
[25] 
S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007). 
[26] 
E. Malkin, Flu? What flu?,, The New York Times, (). 
[27] 
H. Nishiura, C. CastilloChavez, M. Safan and G. Chowell, Transmission potential of the new Influenza A(H1N1) virus and its agespecificity in Japan,, Eurosurveillance, 14 (2009), 1. 
[28] 
M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands,, Journal of The Royal Society Interface, 4 (2007), 505. doi: 10.1098/rsif.2006.0186. 
[29] 
J. Plotkin, J. Dushoff and S. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus,, Proceedings of the National Academy of Sciences, 99 (2002), 6263. doi: 10.1073/pnas.082110799. 
[30] 
L. S. Pontryagin, R. V. Boltyanski, R. V. Gamkrelidge and E. F. Mischenko, "The Mathematical Theory of Optimal Processes,", John Wiley and Sons, (1962). 
[31] 
Prevent Influenza Now! Sponsored by the National Influenza Vaccine Summit, Influenza vaccine availability tracking system (IVATS),, \url{http://www.preventinfluenza.org/ivats/}., (). 
[32] 
C. E. Shoichet, Mexico still waiting for most swine flu vaccines,, (2010), (2010). 
[33] 
E. Spackman, D. Stallknecht, R. Slemons, K. Winker, D. L. Suarez, M. Scott and D. E. Swayne, Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation,, Virus research, 114 (2005), 89. doi: 10.1016/j.virusres.2005.05.013. 
[34] 
R. Stengel, Optimal control and estimation,, http://www.princeton.edu/ stengel/MAE546.html., (). 
[35] 
T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. an der Heiden, A. Heider, B. Biere, B. Schweiger, W. Haas and G. Krause, Shedding and transmission of novel influenza virus A/H1N1 infection in households—Germany, 2009,, American Journal of Epidemiology, 171 (2010), 1157. doi: 10.1093/aje/kwq071. 
[36] 
J. K. Taubenberger, D. M. Morens, 1918 influenza: the mother of all pandemics,, Emerging Infectious Diseases, (2009), 05. 
[37] 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S00255564(02)001086. 
[38] 
World Health Organization, Recommended composition of influenza of influenza virus vaccines for use in the 20012002 season,, Wkly. Epidemiol. Rec., 76 (2001), 58. 
show all references
References:
[1] 
L. Altman, "Many Swine Flu Cases Have no Fever,", New York Times, (2009). 
[2] 
R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991). 
[3] 
I. G. Barr, J. McCauley, N. Cox, R. Daniels, O. G. Engelhardt, K. Fukuda, G. Grohmann, A. Hay, A. Kelso, A. Klimov, T. Odagiri, D. Smith, C. Russell, M. Tashiro, R. Webby, J. Wood, Z. Ye and W. Zhang, Epidemiological, antigenic and genetic characteristics of seasonal influenzaA(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season,, Vaccine, 28 (2010), 1156. doi: 10.1016/j.vaccine.2009.11.043. 
[4] 
H. Behnke, Optimal control of deterministic epidemics,, Optimal Control Application Methods, 21 (2000), 269. doi: 10.1002/oca.678. 
[5] 
W. I. B. Beveridge, "Influenza: The Last Great Plague. An Unfinished Story of Discovery,", Prodist, (1977). 
[6] 
F. Brauer, Z. Feng and C. CastilloChavez, Discrete epidemic models,, Mathematical Biosciences and Engineering, 7 (2010), 1. doi: 10.3934/mbe.2010.7.1. 
[7] 
C. CastilloChavez, H. Hethcote, V. Andreason, S. A. Levin and W. M. Liu, Crossimmunity in the dynamics of homogeneous and heterogeneous populations,, Mathematical Ecology, (1988), 303. 
[8] 
Centers for Disease Control and Prevention (CDC), Key facts about seasonal influenza,, \url{http://www.cdc.gov/flu/keyfacts.htm}., (). 
[9] 
Centers for Disease Control and Prevention (CDC), Monitoring influenza activity, including 2009 H1N1,, (2009), (2009). 
[10] 
Centers for Disease Control and Prevention (CDC), Serum crossreactive antibody response to a novel influenza A(H1N1) virus after vaccination with seasonal influenza vaccine,, MMWR Morb Mortal Wkly Rep, 58 (2009), 521. 
[11] 
G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission an prospects for control,, Epidem. Infect., 136 (2008), 852. doi: 10.1017/S0950268807009144. 
[12] 
G. Chowell, S. M. Bertozzi, M. A. Colchero, H. LopezGatell, C. AlpucheAranda, M. Hernandez and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza,, The New England Journal of Medicine, 361 (2009), 674. doi: 10.1056/NEJMoa0904023. 
[13] 
Brian Coburn, "Multispecies Influenza Models with Recombination,", Ph.D thesis, (2009). 
[14] 
R. Couch and J. Kasel, Immunity to influenza in man,, Annual Reviews in Microbiology, 37 (2002), 529. doi: 10.1146/annurev.mi.37.100183.002525. 
[15] 
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", John Wiley & Sons, (2000). 
[16] 
D. J. D. Earn, J. Dushoff and S. A. Levin, Ecology and evolution of the flu,, Trends Ecol. Evol., 17 (2002), 334. doi: 10.1016/S01695347(02)025028. 
[17] 
S. EchevarríaZuno, J. M. MejíaAranguré, A. V. MarObeso, C. GrajalesMuñiz, E. RoblesPérez, M. GonzálezLeón, M. C. OrtegaAlvarez, C. GonzalezBonilla, R. A. RascónPacheco and V. H. BorjaAburto, Infection and death from influenza A H1N1 virus in Mexico: A retrospective analysis,, Lancet, 374 (2009), 2072. doi: 10.1016/S01406736(09)61638X. 
[18] 
A. EstevesJaramillo, S. B. Omer and E. GonzalezDiaz, Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico,, Archives of Medical Research, 40 (2009), 705. doi: 10.1016/j.arcmed.2010.01.004. 
[19] 
W. H. Fleming and R. W. Rishel, "Deterministic and Stochasitic Optimal Control,", SpringerVerlag, (1994). 
[20] 
FLU. GOV, 2009 H1N1 vaccine doses allocated, ordered, and shipped by project area, (2010),, \url{http://www.flu.gov/individualfamily/vaccination/supply.html}., (). 
[21] 
M. A. HerreraValdez, M. CruzAponte and C. CastilloChavez, Multiple waves for the same pandemic: Local transportation and social distancing explain the dynamics of the A/H1N1 epidemic during 2009 in Mexico,, (2010)., (2010). 
[22] 
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a twostrain tuberculosis model,, Discrete and Continuous Dynamical SystemsSeries B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473. 
[23] 
P. Y. Lee, D. B. Matchar, D. A. Clements, J. Huber, J. D. Hamilton and E. D. Peterson, Economic analysis of influenza vaccination and antiviral treatment for healthy working adults,, Ann. Intern. Med., 137 (2002), 225. 
[24] 
S. Lee, G. Chowell and C. CastilloChavez, Optimal control of influenza pandemics: the role of antiviral treatment and isolation,, Journal of Theoretical Biology, 265 (2010), 136. doi: 10.1016/j.jtbi.2010.04.003. 
[25] 
S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007). 
[26] 
E. Malkin, Flu? What flu?,, The New York Times, (). 
[27] 
H. Nishiura, C. CastilloChavez, M. Safan and G. Chowell, Transmission potential of the new Influenza A(H1N1) virus and its agespecificity in Japan,, Eurosurveillance, 14 (2009), 1. 
[28] 
M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands,, Journal of The Royal Society Interface, 4 (2007), 505. doi: 10.1098/rsif.2006.0186. 
[29] 
J. Plotkin, J. Dushoff and S. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus,, Proceedings of the National Academy of Sciences, 99 (2002), 6263. doi: 10.1073/pnas.082110799. 
[30] 
L. S. Pontryagin, R. V. Boltyanski, R. V. Gamkrelidge and E. F. Mischenko, "The Mathematical Theory of Optimal Processes,", John Wiley and Sons, (1962). 
[31] 
Prevent Influenza Now! Sponsored by the National Influenza Vaccine Summit, Influenza vaccine availability tracking system (IVATS),, \url{http://www.preventinfluenza.org/ivats/}., (). 
[32] 
C. E. Shoichet, Mexico still waiting for most swine flu vaccines,, (2010), (2010). 
[33] 
E. Spackman, D. Stallknecht, R. Slemons, K. Winker, D. L. Suarez, M. Scott and D. E. Swayne, Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation,, Virus research, 114 (2005), 89. doi: 10.1016/j.virusres.2005.05.013. 
[34] 
R. Stengel, Optimal control and estimation,, http://www.princeton.edu/ stengel/MAE546.html., (). 
[35] 
T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. an der Heiden, A. Heider, B. Biere, B. Schweiger, W. Haas and G. Krause, Shedding and transmission of novel influenza virus A/H1N1 infection in households—Germany, 2009,, American Journal of Epidemiology, 171 (2010), 1157. doi: 10.1093/aje/kwq071. 
[36] 
J. K. Taubenberger, D. M. Morens, 1918 influenza: the mother of all pandemics,, Emerging Infectious Diseases, (2009), 05. 
[37] 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S00255564(02)001086. 
[38] 
World Health Organization, Recommended composition of influenza of influenza virus vaccines for use in the 20012002 season,, Wkly. Epidemiol. Rec., 76 (2001), 58. 
[1] 
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377393. doi: 10.3934/mbe.2009.6.377 
[2] 
Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone. Modelling seasonal influenza in Israel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 561573. doi: 10.3934/mbe.2011.8.561 
[3] 
Ariel CintrónArias, Carlos CastilloChávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261282. doi: 10.3934/mbe.2009.6.261 
[4] 
Eunha Shim. Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences & Engineering, 2013, 10 (5/6) : 16151634. doi: 10.3934/mbe.2013.10.1615 
[5] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[6] 
Sherry Towers, Katia Vogt Geisse, ChiaChun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 413430. doi: 10.3934/mbe.2012.9.413 
[7] 
Majid JaberiDouraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 10451063. doi: 10.3934/mbe.2014.11.1045 
[8] 
Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 13591387. doi: 10.3934/dcds.2017056 
[9] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[10] 
E. Muñoz Garcia, R. PérezMarco. Diophantine conditions in small divisors and transcendental number theory. Discrete & Continuous Dynamical Systems  A, 2003, 9 (6) : 14011409. doi: 10.3934/dcds.2003.9.1401 
[11] 
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3/4) : 437497. doi: 10.3934/jmd.2014.8.437 
[12] 
Paula A. GonzálezParra, Sunmi Lee, Leticia Velázquez, Carlos CastilloChavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183197. doi: 10.3934/mbe.2011.8.183 
[13] 
JianJun Xu, Junichiro Shimizu. Asymptotic theory for disclike crystal growth (I)  Basic state solutions. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 10911116. doi: 10.3934/dcdsb.2004.4.1091 
[14] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5/6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[15] 
Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415432. doi: 10.3934/jgm.2013.5.415 
[16] 
K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499510. doi: 10.3934/mbe.2005.2.499 
[17] 
K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133148. doi: 10.3934/jimo.2005.1.133 
[18] 
Jungho Park. Dynamic bifurcation theory of RayleighBénard convection with infinite Prandtl number . Discrete & Continuous Dynamical Systems  B, 2006, 6 (3) : 591604. doi: 10.3934/dcdsb.2006.6.591 
[19] 
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475487. doi: 10.3934/eect.2016015 
[20] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
2016 Impact Factor: 1.035
Tools
Metrics
Other articles
by authors
[Back to Top]