• Previous Article
    Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009
  • MBE Home
  • This Issue
  • Next Article
    Pandemic mitigation: Bringing it home
2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49

Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza

1. 

PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012

Received  June 2010 Revised  September 2010 Published  January 2011

The influenza A (H1N1) pandemic 2009 posed an epidemiological challenge in ascertaining all cases. Although the counting of all influenza cases in real time is often not feasible, empirical observations always involve diagnostic test procedures. This offers an opportunity to jointly quantify transmission dynamics and diagnostic accuracy. We have developed a joint estimation procedure that exploits parsimonious models to describe the epidemic dynamics and that parameterizes the number of test positives and test negatives as a function of time. Our analyses of simulated data and data from the empirical observation of interpandemic influenza A (H1N1) from 2007-08 in Japan indicate that the proposed approach permits a more precise quantification of the transmission dynamics compared to methods that rely on test positive cases alone. The analysis of entry screening data for the H1N1 pandemic 2009 at Tokyo-Narita airport helped us quantify the very limited specificity of influenza-like illness in detecting actual influenza cases in the passengers. The joint quantification does not require us to condition diagnostic accuracy on any pre-defined study population. Our study suggests that by consistently reporting both test positive and test negative cases, the usefulness of extractable information from routine surveillance record of infectious diseases would be maximized.
Citation: Hiroshi Nishiura. Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 49-64. doi: 10.3934/mbe.2011.8.49
References:
[1]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,", Wiley, (1964).

[2]

H. M. Babcock, L. R. Merz, E. R. Dubberke and V. J. Fraser, Case-control study of clinical features of influenza in hospitalized patients,, Infect. Control. Hosp. Epidemiol., 29 (2008), 921. doi: 10.1086/590663.

[3]

R. B. Banks, "Growth and Diffusion Phenomena: Mathematical Frameworks and Applications,", Springer, (1993).

[4]

S. A. Call, M. A. Vollenweider, C. A. Hornung, D. L. Simel and W. P. McKinney, Does this patient have influenza?, JAMA, 293 (2005), 987.

[5]

G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission and prospects for control,, Epidemiol. Infect., 136 (2008), 852. doi: 10.1017/S0950268807009144.

[6]

B. J. Cowling, L. L. Lau, P. Wu, H. W. Wong, V. J. Fang, S. Riley and H. Nishiura, Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1),, BMC Infect. Dis., 10 (2010). doi: 10.1186/1471-2334-10-82.

[7]

C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybu, Pandemic potential of a strain of influenza A (H1N1): Early findings,, Science, 324 (2009), 1557. doi: 10.1126/science.1176062.

show all references

References:
[1]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,", Wiley, (1964).

[2]

H. M. Babcock, L. R. Merz, E. R. Dubberke and V. J. Fraser, Case-control study of clinical features of influenza in hospitalized patients,, Infect. Control. Hosp. Epidemiol., 29 (2008), 921. doi: 10.1086/590663.

[3]

R. B. Banks, "Growth and Diffusion Phenomena: Mathematical Frameworks and Applications,", Springer, (1993).

[4]

S. A. Call, M. A. Vollenweider, C. A. Hornung, D. L. Simel and W. P. McKinney, Does this patient have influenza?, JAMA, 293 (2005), 987.

[5]

G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission and prospects for control,, Epidemiol. Infect., 136 (2008), 852. doi: 10.1017/S0950268807009144.

[6]

B. J. Cowling, L. L. Lau, P. Wu, H. W. Wong, V. J. Fang, S. Riley and H. Nishiura, Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1),, BMC Infect. Dis., 10 (2010). doi: 10.1186/1471-2334-10-82.

[7]

C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybu, Pandemic potential of a strain of influenza A (H1N1): Early findings,, Science, 324 (2009), 1557. doi: 10.1126/science.1176062.

[1]

Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479

[2]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[3]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[4]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[5]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[6]

C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69

[7]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[8]

Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 413-430. doi: 10.3934/mbe.2012.9.413

[9]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[10]

Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks & Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149

[11]

Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509

[12]

Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences & Engineering, 2009, 6 (3) : 649-661. doi: 10.3934/mbe.2009.6.649

[13]

Najat Ziyadi, Said Boulite, M. Lhassan Hbid, Suzanne Touzeau. Mathematical analysis of a PDE epidemiological model applied to scrapie transmission. Communications on Pure & Applied Analysis, 2008, 7 (3) : 659-675. doi: 10.3934/cpaa.2008.7.659

[14]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[15]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[16]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[17]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[18]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[19]

Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229

[20]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

2016 Impact Factor: 1.035

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]