2011, 4(6): 1413-1428. doi: 10.3934/dcdss.2011.4.1413

Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning

1. 

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States, United States, United States, United States

2. 

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

3. 

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618

Received  May 2009 Revised  September 2009 Published  December 2010

The reaction-diffusion system modeling the dorsal-ventral patterning during the zebrafish embryo development, developed in [Y.-T. Zhang, A.D. Lander, Q. Nie, Journal of Theoretical Biology, 248 (2007), 579--589] has multiple steady state solutions. In this paper, we describe the computation of seven steady state solutions found by discretizing the boundary value problem using a finite difference scheme and solving the resulting polynomial system using algorithms from numerical algebraic geometry. The stability of each of these steady state solutions is studied by mathematical analysis and numerical simulations via a time marching approach. The results of this paper show that three of the seven steady state solutions are stable and the location of the organizer of a zebrafish embryo determines which stable steady state pattern the multi-stability system converges to. Numerical simulations also show that the system is robust with respect to the change of the organizer size.
Citation: Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, Yong-Tao Zhang. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1413-1428. doi: 10.3934/dcdss.2011.4.1413
References:
[1]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, "Bertini: Software for Numerical Algebraic Geometry,", Available at \url{http://www.nd.edu/~sommese/bertini}., ().

[2]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, II, Software for numerical algebraic geometry: A paradigm and progress towards its implementation,, in, 148 (2008), 1.

[3]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Adaptive multiprecision path tracking,, SIAM J. Numer. Anal., 46 (2008), 722. doi: 10.1137/060658862.

[4]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Stepsize control for adaptive multiprecision path tracking,, in, 496 (2009), 21.

[5]

B. Gustafsson, H.-O. Kreiss and J. Oliger, "Time Dependent Problems and Difference Methods,", Wiley, (1995).

[6]

A. D. Lander, Morpheus unbound: Reimagining the Morphogen gradient,, Cell, 128 (2007), 245.

[7]

L. Saude, K. Woolley, P. Martin, W. Driever and D. L. Stemple, Axis-inducing activities and cell fates of the zebrafish organizer,, Development, 127 (2000), 3407.

[8]

A. J. Sommese and C. W. Wampler, II, "The Numerical Solution of Systems of Polynomials Arising in Engineering and Science,", World Scientific Publishing Co. Pte. Ltd., (2005). doi: 10.1142/9789812567727.

[9]

J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,", Springer-Verlag, (1993).

[10]

A. A. Teleman, M. Strigini and S. M. Cohen, Shaping morphogen gradients,, Cell, 105 (2001), 559.

[11]

J. Verschelde and R. Cools, Symbolic homotopy construction,, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 169. doi: 10.1007/BF01202036.

[12]

L. Wolpert, R. Beddington, J. Brockets, T. Jessel, P. Lawrence and E. Meyerowitz, "Principles of Development,", Oxford University, (2002).

[13]

Y.-T. Zhang, A. Lander and Q. Nie, Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo,, Journal of Theoretical Biology, 248 (2007), 579. doi: 10.1016/j.jtbi.2007.05.026.

show all references

References:
[1]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, "Bertini: Software for Numerical Algebraic Geometry,", Available at \url{http://www.nd.edu/~sommese/bertini}., ().

[2]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, II, Software for numerical algebraic geometry: A paradigm and progress towards its implementation,, in, 148 (2008), 1.

[3]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Adaptive multiprecision path tracking,, SIAM J. Numer. Anal., 46 (2008), 722. doi: 10.1137/060658862.

[4]

D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Stepsize control for adaptive multiprecision path tracking,, in, 496 (2009), 21.

[5]

B. Gustafsson, H.-O. Kreiss and J. Oliger, "Time Dependent Problems and Difference Methods,", Wiley, (1995).

[6]

A. D. Lander, Morpheus unbound: Reimagining the Morphogen gradient,, Cell, 128 (2007), 245.

[7]

L. Saude, K. Woolley, P. Martin, W. Driever and D. L. Stemple, Axis-inducing activities and cell fates of the zebrafish organizer,, Development, 127 (2000), 3407.

[8]

A. J. Sommese and C. W. Wampler, II, "The Numerical Solution of Systems of Polynomials Arising in Engineering and Science,", World Scientific Publishing Co. Pte. Ltd., (2005). doi: 10.1142/9789812567727.

[9]

J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,", Springer-Verlag, (1993).

[10]

A. A. Teleman, M. Strigini and S. M. Cohen, Shaping morphogen gradients,, Cell, 105 (2001), 559.

[11]

J. Verschelde and R. Cools, Symbolic homotopy construction,, Appl. Algebra Engrg. Comm. Comput., 4 (1993), 169. doi: 10.1007/BF01202036.

[12]

L. Wolpert, R. Beddington, J. Brockets, T. Jessel, P. Lawrence and E. Meyerowitz, "Principles of Development,", Oxford University, (2002).

[13]

Y.-T. Zhang, A. Lander and Q. Nie, Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo,, Journal of Theoretical Biology, 248 (2007), 579. doi: 10.1016/j.jtbi.2007.05.026.

[1]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[2]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[3]

Dagny Butler, Eunkyung Ko, R. Shivaji. Alternate steady states for classes of reaction diffusion models on exterior domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1181-1191. doi: 10.3934/dcdss.2014.7.1181

[4]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[5]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[6]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[7]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[8]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[9]

Piermarco Cannarsa, Alexander Khapalov. Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1293-1311. doi: 10.3934/dcdsb.2010.14.1293

[10]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[11]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[12]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[13]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[14]

Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69

[15]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[16]

Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669

[17]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[18]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[19]

Ana Carpio, Gema Duro. Explosive behavior in spatially discrete reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 693-711. doi: 10.3934/dcdsb.2009.12.693

[20]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (3)

[Back to Top]