2011, 10(1): 361-396. doi: 10.3934/cpaa.2011.10.361

An evolution equation involving the normalized $P$-Laplacian

1. 

Mathematisches Institut, Universität zu Köln, 50923 Köln, Germany

Received  February 2010 Revised  May 2010 Published  November 2010

This paper considers an initial-boundary value problem for the evolution equation associated with the normalized $p$-Laplacian. There exists a unique viscosity solution $u,$ which is globally Lipschitz continuous with respect to $t$ and locally with respect to $x.$ Moreover, we study the long time behavior of the viscosity solution $u$ and compute numerical solutions of the problem.
Citation: Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure & Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361
References:
[1]

A. Almansa, F. Cao, Y. Gousseau and B. Rougé, Interpolation of Digital Elevation Models Using AMLE and Related Methods,, IEEE Transaction on Geoscience and Remote Sensing, 40 (2002), 314.

[2]

G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications,, J. Differential Equations, 154 (1999), 191.

[3]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.

[4]

I. Birindelli and F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators,, Adv. Differential Equations, 11 (2006), 91.

[5]

V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, IEEE Trans. Image Process., 7 (1998), 376. doi: doi:10.1109/83.661188.

[6]

Y. G. Chen and E. DiBenedetto, On the local behavior of solutions of singular parabolic equations,, Arch. Rational Mech. Anal., 103 (1988), 319.

[7]

Y. G. Chen, Y. Giga and S. Goto, Remarks on viscosity solutions for evolution equations,, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 323. doi: doi:10.3792/pjaa.67.323.

[8]

L. Collatz, "The Numerical Treatment of Differential Equations,", Springer-Verlag, (1966).

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.

[10]

E. DiBenedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993). doi: doi:10.1515/crll.1985.357.1.

[11]

E. DiBenedetto and M. A. Herrero, Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1,, Arch. Rational Mech. Anal., 111 (1990), 225.

[12]

E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems,, J. Reine Angew. Math., 357 (1985), 1.

[13]

K. Does, "An Evolution Equation Involving the Normalized $p$-Laplacian,", Ph.D thesis, (2009).

[14]

P. Dupius and H. Ishii, On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains,, Nonlinear Anal., 12 (1990), 1123.

[15]

L. C. Evans, The 1-Laplacian, the $\infty$-Laplacian and differential games,, Contemp. Math., 446 (2007), 245.

[16]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", CRC Press, (1992).

[17]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,, J. Differential Geom., 33 (1991), 635.

[18]

Y. Giga, "Surface Evolution Equation - a Level Set Method,", Birkh\, (2006).

[19]

C. Grossmann and H.-G. Roos, "Numerik Partieller Differentialgleichungen,", Teubner Verlag, (1994).

[20]

W. Hackbusch, "Theorie und Numerik Elliptischer Differentialgleichungen,", Teubner Verlag, (1996).

[21]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian,, Math. Ann., 335 (2006), 819. doi: doi:10.1007/s00208-006-0766-3.

[22]

B. Kawohl, Variational versus PDE-based approaches in mathematical image processing,, CRM Proceedings and Lecture Notes, 44 (2006), 113.

[23]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344. doi: doi:10.1002/cpa.20101.

[24]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1968).

[25]

T. Leonori and J. M. Urbano, Growth Conditions and Uniqueness of the Cauchy Problem for the Evolutionary Infinity Laplacian,, preprint, ().

[26]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co. Pte. Ltd, (1996).

[27]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, available at: http://math.tkk.fi/ mjparvia/index.html, ().

[28]

A. M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions,, Math. Comp., 74 (2005), 1217.

[29]

M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the $p$-Laplace diffusion equation,, Comm. Partial Differential Equations, 22 (1997), 381.

[30]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, J. Amer. Math. Soc., 22 (2009), 167. doi: doi:10.1090/S0894-0347-08-00606-1.

[31]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian,, Duke Math. J., 145 (2008), 91. doi: doi:10.1215/00127094-2008-048.

[32]

W. Rudin, "Principles of Mathematical Analysis,", McGraw-Hill Book Company, (1964).

[33]

X. Xu, On the Cauchy problem for a singular parabolic equation,, Pacific J. Math., 174 (1996), 277.

show all references

References:
[1]

A. Almansa, F. Cao, Y. Gousseau and B. Rougé, Interpolation of Digital Elevation Models Using AMLE and Related Methods,, IEEE Transaction on Geoscience and Remote Sensing, 40 (2002), 314.

[2]

G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications,, J. Differential Equations, 154 (1999), 191.

[3]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.

[4]

I. Birindelli and F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators,, Adv. Differential Equations, 11 (2006), 91.

[5]

V. Caselles, J. M. Morel and C. Sbert, An axiomatic approach to image interpolation,, IEEE Trans. Image Process., 7 (1998), 376. doi: doi:10.1109/83.661188.

[6]

Y. G. Chen and E. DiBenedetto, On the local behavior of solutions of singular parabolic equations,, Arch. Rational Mech. Anal., 103 (1988), 319.

[7]

Y. G. Chen, Y. Giga and S. Goto, Remarks on viscosity solutions for evolution equations,, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 323. doi: doi:10.3792/pjaa.67.323.

[8]

L. Collatz, "The Numerical Treatment of Differential Equations,", Springer-Verlag, (1966).

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.

[10]

E. DiBenedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993). doi: doi:10.1515/crll.1985.357.1.

[11]

E. DiBenedetto and M. A. Herrero, Nonnegative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1,, Arch. Rational Mech. Anal., 111 (1990), 225.

[12]

E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems,, J. Reine Angew. Math., 357 (1985), 1.

[13]

K. Does, "An Evolution Equation Involving the Normalized $p$-Laplacian,", Ph.D thesis, (2009).

[14]

P. Dupius and H. Ishii, On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains,, Nonlinear Anal., 12 (1990), 1123.

[15]

L. C. Evans, The 1-Laplacian, the $\infty$-Laplacian and differential games,, Contemp. Math., 446 (2007), 245.

[16]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", CRC Press, (1992).

[17]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,, J. Differential Geom., 33 (1991), 635.

[18]

Y. Giga, "Surface Evolution Equation - a Level Set Method,", Birkh\, (2006).

[19]

C. Grossmann and H.-G. Roos, "Numerik Partieller Differentialgleichungen,", Teubner Verlag, (1994).

[20]

W. Hackbusch, "Theorie und Numerik Elliptischer Differentialgleichungen,", Teubner Verlag, (1996).

[21]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian,, Math. Ann., 335 (2006), 819. doi: doi:10.1007/s00208-006-0766-3.

[22]

B. Kawohl, Variational versus PDE-based approaches in mathematical image processing,, CRM Proceedings and Lecture Notes, 44 (2006), 113.

[23]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344. doi: doi:10.1002/cpa.20101.

[24]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1968).

[25]

T. Leonori and J. M. Urbano, Growth Conditions and Uniqueness of the Cauchy Problem for the Evolutionary Infinity Laplacian,, preprint, ().

[26]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co. Pte. Ltd, (1996).

[27]

J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, available at: http://math.tkk.fi/ mjparvia/index.html, ().

[28]

A. M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions,, Math. Comp., 74 (2005), 1217.

[29]

M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the $p$-Laplace diffusion equation,, Comm. Partial Differential Equations, 22 (1997), 381.

[30]

Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian,, J. Amer. Math. Soc., 22 (2009), 167. doi: doi:10.1090/S0894-0347-08-00606-1.

[31]

Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian,, Duke Math. J., 145 (2008), 91. doi: doi:10.1215/00127094-2008-048.

[32]

W. Rudin, "Principles of Mathematical Analysis,", McGraw-Hill Book Company, (1964).

[33]

X. Xu, On the Cauchy problem for a singular parabolic equation,, Pacific J. Math., 174 (1996), 277.

[1]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[2]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[3]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[4]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[5]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[6]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[7]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[8]

Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203

[9]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[10]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[11]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[12]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[13]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[14]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[15]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[16]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[17]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[18]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[19]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[20]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]