2010, 7(4): 851-869. doi: 10.3934/mbe.2010.7.851

Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential

1. 

PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

Received  November 2009 Revised  June 2010 Published  October 2010

Although the generation time of an infectious disease plays a key role in estimating its transmission potential, the impact of the sampling time of generation times on the estimation procedure has yet to be clarified. The present study defines the period and cohort generation times, both of which are time-inhomogeneous, as a function of the infection time of secondary and primary cases, respectively. By means of analytical and numerical approaches, it is shown that the period generation time increases with calendar time, whereas the cohort generation time decreases as the incidence increases. The initial growth phase of an epidemic of Asian influenza A (H2N2) in the Netherlands in 1957 was reanalyzed, and estimates of the basic reproduction number, $R_0$, from the Lotka-Euler equation were examined. It was found that the sampling time of generation time during the course of the epidemic introduced a time-effect to the estimate of $R_0$. Other historical data of a primary pneumonic plague in Manchuria in 1911 were also examined to help illustrate the empirical evidence of the period generation time. If the serial intervals, which eventually determine the generation times, are sampled during the course of an epidemic, direct application of the sampled generation-time distribution to the Lotka-Euler equation leads to a biased estimate of $R_0$. An appropriate quantification of the transmission potential requires the estimation of the cohort generation time during the initial growth phase of an epidemic or adjustment of the time-effect (e.g., adjustment of the growth rate of the epidemic during the sampling time) on the period generation time. A similar issue also applies to the estimation of the effective reproduction number as a function of calendar time. Mathematical properties of the generation time distribution in a heterogeneously mixing population need to be clarified further.
Citation: Hiroshi Nishiura. Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential. Mathematical Biosciences & Engineering, 2010, 7 (4) : 851-869. doi: 10.3934/mbe.2010.7.851
References:
[1]

J. M. Alho and B. D. Spencer, "Statistical Demography and Forecasting,", Springer, (2005).

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991).

[3]

N. T. J. Bailey, "The Mathematical Theory of Infectious Diseases and its Applications,", 2nd edition, (1975).

[4]

T. Burr and G. Chowell, The reproduction number $R(t)$ in structured and nonstructured populations,, Math. Biosci. Eng., 6 (2009), 239. doi: doi:10.3934/mbe.2009.6.239.

[5]

S. Cauchemez, P. Y. Boelle, C. A. Donnelly, N. M. Ferguson, G. Thomas, G. M. Leung, A. J. Hedley, R. M. Anderson and A. J. Valleron, Real-time estimates in early detection of SARS,, Emerg. Infect. Dis., 12 (2006), 110.

[6]

S. Cauchemez, P. Y. Boelle, G. Thomas and A. J. Valleron, Estimating in real time the efficacy of measures to control emerging communicable diseases,, Am. J. Epidemiol., 164 (2006), 591. doi: doi:10.1093/aje/kwj274.

[7]

G. Chowell, H. Nishiura and L. M. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data,, J. R. Soc. Interface., 4 (2007), 155. doi: doi:10.1098/rsif.2006.0161.

[8]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley, (2000).

[9]

O. Diekmann, J. A. P. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: doi:10.1007/BF00178324.

[10]

K. Dietz, The estimation of the basic reproduction number for infectious diseases,, Stat. Methods. Med. Res., 2 (1993), 23. doi: doi:10.1177/096228029300200103.

[11]

L. I. Dublin and A. J. Lotka, On the true rate of natural increase,, J. Am. Stat. Assoc., 151 (1925), 305. doi: doi:10.2307/2965517.

[12]

P. E. M. Fine, The interval between successive cases of an infectious disease,, Am. J. Epidemiol., 158 (2003), 755. doi: doi:10.1093/aje/kwg251.

[13]

C. Fraser, Estimating individual and household reproduction numbers in an emerging epidemic,, PLoS One, 2 (2007). doi: doi:10.1371/journal.pone.0000758.

[14]

C. Fraser, S. Riley, R. M. Anderson and N. M. Ferguson, Factors that make an infectious disease outbreak controllable,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 6146. doi: doi:10.1073/pnas.0307506101.

[15]

T. Garske, P. Clarke and A. C. Ghani, The transmissibility of highly pathogenic avian influenza in commercial poultry in industrialised countries,, PLoS One, 2 (2007). doi: doi:10.1371/journal.pone.0000349.

[16]

N. C. Grassly and C. Fraser, Mathematical models of infectious disease transmission,, Nat. Rev. Microbiol., 6 (2008), 477.

[17]

D. T. Haydon, M. Chase-Topping, D. J. Shaw, L. Matthews, J. K. Friar, J. Wilesmith and M. E. Woolhouse, The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak,, Proc. R. Soc. Lond. Ser. B., 270 (2003), 121. doi: doi:10.1098/rspb.2002.2191.

[18]

R. E. Hope Simpson, The period of transmission in certain epidemic diseases: An observational method for its discovery,, Lancet, 2 (1948), 755. doi: doi:10.1016/S0140-6736(48)91328-2.

[19]

H. Inaba and H. Nishiura, The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model,, Math. Biosci., 216 (2008), 77. doi: doi:10.1016/j.mbs.2008.08.005.

[20]

J. D. Kalbfleisch and J. F. Lawless, Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS,, J. Am. Stat. Assoc., 84 (1989), 360. doi: doi:10.2307/2289919.

[21]

E. Kenah, M. Lipsitch and J. M. Robins, Generation interval contraction and epidemic data analysis,, Math. Biosci., 213 (2008), 71. doi: doi:10.1016/j.mbs.2008.02.007.

[22]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. I.,, Proc. R. Soc. Ser. A., 115 (1927), 700. doi: doi:10.1016/S0092-8240(05)80040-0.

[23]

N. Keyfitz, "Applied Mathematical Demography,", John Wiley and Sons, (1977).

[24]

S. W. Lakagos, L. M. Barraj and V. De Gruttola, Nonparametric analysis of truncated survival data, with application to AIDS,, Biometrika, 75 (1988), 515. doi: doi:10.1093/biomet/75.3.515.

[25]

M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma, L. James, G. Gopalakrishna, S. K. Chew, C. C. Tan, M. H. Samore, D. Fisman and M. Murray, Transmission dynamics and control of severe acute respiratory syndrome,, Science, 38 (2003), 115.

[26]

N. Masurel and W. M. Marine, Recycling of Asian and Hong Kong influenza A virus hemagglutinins in man,, Am. J. Epidemiol., 97 (1973), 44.

[27]

C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza,, Nature, 432 (2004), 904. doi: doi:10.1038/nature03063.

[28]

J. Mulder, N. Masurel and J. F. P. Hers, De Aziatische-influenza-pandemie van 1957 (Dutch),, Ned. Tijdschr. Geneeskd., 102 (1958), 1992.

[29]

H. Nishiura, Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data,, Int. J. Environ. Res. Public. Health., 7 (2010), 291. doi: doi:10.3390/ijerph7010291.

[30]

H. Nishiura, Early efforts in modeling the incubation period of infectious diseases with an acute course of illness,, Emerg. Themes. Epidemiol., 4 (2007). doi: doi:10.1186/1742-7622-4-2.

[31]

H. Nishiura, Epidemiology of a primary pneumonic plague in Kantoshu, Manchuria, from 1910 to 1911: Statistical analysis of individual records collected by the Japanese Empire,, Int. J. Epidemiol., 35 (2006), 1059. doi: doi:10.1093/ije/dyl091.

[32]

H. Nishiura, Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19,, Theor. Biol. Med. Model., 4 (2007). doi: doi:10.1186/1742-4682-4-20.

[33]

H. Nishiura and G. Chowell, The effective reproduction number as a prelude to statistical estimtion of time-dependent epidemic trends,, in, (2009), 103. doi: doi:10.1007/978-90-481-2313-1_5.

[34]

H. Nishiura, G. Chowell, H. Heesterbeek and J. Wallinga, The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course,, J. R. Soc. Interface., 7 (2010), 297. doi: doi:10.1098/rsif.2009.0153.

[35]

H. Nishiura, G. Chowell, M. Safan and C. Castillo-Chavez, Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009,, Theor. Biol. Med. Model., 7 (2010). doi: doi:10.1186/1742-4682-7-1.

[36]

H. Nishiura, M. Schwehm, M. Kakehashi and M. Eichner, Transmission potential of primary pneumonic plague: Time inhomogeneous evaluation based on historical documents of the transmission network,, J. Epidemiol. Community. Health., 60 (2006), 640. doi: doi:10.1136/jech.2005.042424.

[37]

W. Pickles, "Epidemiology in Country Practice,", John Wright and Sons, (1939).

[38]

M. G. Roberts and J. A. Heesterbeek, Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection,, J. Math. Biol., 55 (2007), 803. doi: doi:10.1007/s00285-007-0112-8.

[39]

G. Scalia Tomba, A. Svensson, T. Asikainen and J. Giesecke, Some model based considerations on observing generation times for communicable diseases,, Math. Biosci., 223 (2010), 24. doi: doi:10.1016/j.mbs.2009.10.004.

[40]

A. Svensson, A note on generation times in epidemic models,, Math. Biosci., 208 (2007), 300. doi: doi:10.1016/j.mbs.2006.10.010.

[41]

Temporary Quarantine Section, K. Totokufu, "Epidemic Record of Plague During 1910-1911" (Meiji 43,4-nen 'Pest' Ryuko-shi),, Manchurian Daily Press, (1912).

[42]

E. Vynnycky and W. J. Edmunds, Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures,, Epidemiol. Infect., 136 (2008), 166. doi: doi:10.1017/S0950268807008369.

[43]

E. Vynnycky and P. E. Fine, Lifetime risks, incubation period, and serial interval of tuberculosis,, Am. J. Epidemiol., 152 (2000), 247. doi: doi:10.1093/aje/152.3.247.

[44]

E. Vynnycky, A. Trindall and P. Mangtani, Estimates of the reproduction numbers of Spanish influenza using morbidity data,, Int. J. Epidemiol., 36 (2007), 881. doi: doi:10.1093/ije/dym071.

[45]

J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers,, Proc. R. Soc. Lond. Ser. B., 274 (2007), 599. doi: doi:10.1098/rspb.2006.3754.

[46]

J. Wallinga and P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures,, Am. J. Epidemiol., 160 (2004), 509. doi: doi:10.1093/aje/kwh255.

[47]

L. F. White and M. Pagano, A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic,, Stat. Med., 27 (2007), 2999. doi: doi:10.1002/sim.3136.

[48]

P. Yan, Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks,, J. Theor. Biol., 251 (2008), 238. doi: doi:10.1016/j.jtbi.2007.11.027.

show all references

References:
[1]

J. M. Alho and B. D. Spencer, "Statistical Demography and Forecasting,", Springer, (2005).

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991).

[3]

N. T. J. Bailey, "The Mathematical Theory of Infectious Diseases and its Applications,", 2nd edition, (1975).

[4]

T. Burr and G. Chowell, The reproduction number $R(t)$ in structured and nonstructured populations,, Math. Biosci. Eng., 6 (2009), 239. doi: doi:10.3934/mbe.2009.6.239.

[5]

S. Cauchemez, P. Y. Boelle, C. A. Donnelly, N. M. Ferguson, G. Thomas, G. M. Leung, A. J. Hedley, R. M. Anderson and A. J. Valleron, Real-time estimates in early detection of SARS,, Emerg. Infect. Dis., 12 (2006), 110.

[6]

S. Cauchemez, P. Y. Boelle, G. Thomas and A. J. Valleron, Estimating in real time the efficacy of measures to control emerging communicable diseases,, Am. J. Epidemiol., 164 (2006), 591. doi: doi:10.1093/aje/kwj274.

[7]

G. Chowell, H. Nishiura and L. M. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data,, J. R. Soc. Interface., 4 (2007), 155. doi: doi:10.1098/rsif.2006.0161.

[8]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley, (2000).

[9]

O. Diekmann, J. A. P. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: doi:10.1007/BF00178324.

[10]

K. Dietz, The estimation of the basic reproduction number for infectious diseases,, Stat. Methods. Med. Res., 2 (1993), 23. doi: doi:10.1177/096228029300200103.

[11]

L. I. Dublin and A. J. Lotka, On the true rate of natural increase,, J. Am. Stat. Assoc., 151 (1925), 305. doi: doi:10.2307/2965517.

[12]

P. E. M. Fine, The interval between successive cases of an infectious disease,, Am. J. Epidemiol., 158 (2003), 755. doi: doi:10.1093/aje/kwg251.

[13]

C. Fraser, Estimating individual and household reproduction numbers in an emerging epidemic,, PLoS One, 2 (2007). doi: doi:10.1371/journal.pone.0000758.

[14]

C. Fraser, S. Riley, R. M. Anderson and N. M. Ferguson, Factors that make an infectious disease outbreak controllable,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 6146. doi: doi:10.1073/pnas.0307506101.

[15]

T. Garske, P. Clarke and A. C. Ghani, The transmissibility of highly pathogenic avian influenza in commercial poultry in industrialised countries,, PLoS One, 2 (2007). doi: doi:10.1371/journal.pone.0000349.

[16]

N. C. Grassly and C. Fraser, Mathematical models of infectious disease transmission,, Nat. Rev. Microbiol., 6 (2008), 477.

[17]

D. T. Haydon, M. Chase-Topping, D. J. Shaw, L. Matthews, J. K. Friar, J. Wilesmith and M. E. Woolhouse, The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak,, Proc. R. Soc. Lond. Ser. B., 270 (2003), 121. doi: doi:10.1098/rspb.2002.2191.

[18]

R. E. Hope Simpson, The period of transmission in certain epidemic diseases: An observational method for its discovery,, Lancet, 2 (1948), 755. doi: doi:10.1016/S0140-6736(48)91328-2.

[19]

H. Inaba and H. Nishiura, The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model,, Math. Biosci., 216 (2008), 77. doi: doi:10.1016/j.mbs.2008.08.005.

[20]

J. D. Kalbfleisch and J. F. Lawless, Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS,, J. Am. Stat. Assoc., 84 (1989), 360. doi: doi:10.2307/2289919.

[21]

E. Kenah, M. Lipsitch and J. M. Robins, Generation interval contraction and epidemic data analysis,, Math. Biosci., 213 (2008), 71. doi: doi:10.1016/j.mbs.2008.02.007.

[22]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. I.,, Proc. R. Soc. Ser. A., 115 (1927), 700. doi: doi:10.1016/S0092-8240(05)80040-0.

[23]

N. Keyfitz, "Applied Mathematical Demography,", John Wiley and Sons, (1977).

[24]

S. W. Lakagos, L. M. Barraj and V. De Gruttola, Nonparametric analysis of truncated survival data, with application to AIDS,, Biometrika, 75 (1988), 515. doi: doi:10.1093/biomet/75.3.515.

[25]

M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma, L. James, G. Gopalakrishna, S. K. Chew, C. C. Tan, M. H. Samore, D. Fisman and M. Murray, Transmission dynamics and control of severe acute respiratory syndrome,, Science, 38 (2003), 115.

[26]

N. Masurel and W. M. Marine, Recycling of Asian and Hong Kong influenza A virus hemagglutinins in man,, Am. J. Epidemiol., 97 (1973), 44.

[27]

C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza,, Nature, 432 (2004), 904. doi: doi:10.1038/nature03063.

[28]

J. Mulder, N. Masurel and J. F. P. Hers, De Aziatische-influenza-pandemie van 1957 (Dutch),, Ned. Tijdschr. Geneeskd., 102 (1958), 1992.

[29]

H. Nishiura, Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data,, Int. J. Environ. Res. Public. Health., 7 (2010), 291. doi: doi:10.3390/ijerph7010291.

[30]

H. Nishiura, Early efforts in modeling the incubation period of infectious diseases with an acute course of illness,, Emerg. Themes. Epidemiol., 4 (2007). doi: doi:10.1186/1742-7622-4-2.

[31]

H. Nishiura, Epidemiology of a primary pneumonic plague in Kantoshu, Manchuria, from 1910 to 1911: Statistical analysis of individual records collected by the Japanese Empire,, Int. J. Epidemiol., 35 (2006), 1059. doi: doi:10.1093/ije/dyl091.

[32]

H. Nishiura, Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19,, Theor. Biol. Med. Model., 4 (2007). doi: doi:10.1186/1742-4682-4-20.

[33]

H. Nishiura and G. Chowell, The effective reproduction number as a prelude to statistical estimtion of time-dependent epidemic trends,, in, (2009), 103. doi: doi:10.1007/978-90-481-2313-1_5.

[34]

H. Nishiura, G. Chowell, H. Heesterbeek and J. Wallinga, The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course,, J. R. Soc. Interface., 7 (2010), 297. doi: doi:10.1098/rsif.2009.0153.

[35]

H. Nishiura, G. Chowell, M. Safan and C. Castillo-Chavez, Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009,, Theor. Biol. Med. Model., 7 (2010). doi: doi:10.1186/1742-4682-7-1.

[36]

H. Nishiura, M. Schwehm, M. Kakehashi and M. Eichner, Transmission potential of primary pneumonic plague: Time inhomogeneous evaluation based on historical documents of the transmission network,, J. Epidemiol. Community. Health., 60 (2006), 640. doi: doi:10.1136/jech.2005.042424.

[37]

W. Pickles, "Epidemiology in Country Practice,", John Wright and Sons, (1939).

[38]

M. G. Roberts and J. A. Heesterbeek, Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection,, J. Math. Biol., 55 (2007), 803. doi: doi:10.1007/s00285-007-0112-8.

[39]

G. Scalia Tomba, A. Svensson, T. Asikainen and J. Giesecke, Some model based considerations on observing generation times for communicable diseases,, Math. Biosci., 223 (2010), 24. doi: doi:10.1016/j.mbs.2009.10.004.

[40]

A. Svensson, A note on generation times in epidemic models,, Math. Biosci., 208 (2007), 300. doi: doi:10.1016/j.mbs.2006.10.010.

[41]

Temporary Quarantine Section, K. Totokufu, "Epidemic Record of Plague During 1910-1911" (Meiji 43,4-nen 'Pest' Ryuko-shi),, Manchurian Daily Press, (1912).

[42]

E. Vynnycky and W. J. Edmunds, Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures,, Epidemiol. Infect., 136 (2008), 166. doi: doi:10.1017/S0950268807008369.

[43]

E. Vynnycky and P. E. Fine, Lifetime risks, incubation period, and serial interval of tuberculosis,, Am. J. Epidemiol., 152 (2000), 247. doi: doi:10.1093/aje/152.3.247.

[44]

E. Vynnycky, A. Trindall and P. Mangtani, Estimates of the reproduction numbers of Spanish influenza using morbidity data,, Int. J. Epidemiol., 36 (2007), 881. doi: doi:10.1093/ije/dym071.

[45]

J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers,, Proc. R. Soc. Lond. Ser. B., 274 (2007), 599. doi: doi:10.1098/rspb.2006.3754.

[46]

J. Wallinga and P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures,, Am. J. Epidemiol., 160 (2004), 509. doi: doi:10.1093/aje/kwh255.

[47]

L. F. White and M. Pagano, A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic,, Stat. Med., 27 (2007), 2999. doi: doi:10.1002/sim.3136.

[48]

P. Yan, Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks,, J. Theor. Biol., 251 (2008), 238. doi: doi:10.1016/j.jtbi.2007.11.027.

[1]

Hiroshi Nishiura. Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 49-64. doi: 10.3934/mbe.2011.8.49

[2]

Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479

[3]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[6]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[7]

C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69

[8]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[9]

Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 413-430. doi: 10.3934/mbe.2012.9.413

[10]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[11]

Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks & Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149

[12]

Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509

[13]

Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences & Engineering, 2009, 6 (3) : 649-661. doi: 10.3934/mbe.2009.6.649

[14]

Najat Ziyadi, Said Boulite, M. Lhassan Hbid, Suzanne Touzeau. Mathematical analysis of a PDE epidemiological model applied to scrapie transmission. Communications on Pure & Applied Analysis, 2008, 7 (3) : 659-675. doi: 10.3934/cpaa.2008.7.659

[15]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[16]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[17]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[18]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[19]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[20]

Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]