2010, 7(4): 809-823. doi: 10.3934/mbe.2010.7.809

An application of queuing theory to SIS and SEIS epidemic models

1. 

Facultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, Colima, Mexico, Mexico, Mexico

2. 

Mathematics, Computational and Modeling Sciences Center, Arizona State University PO Box 871904, Tempe, AZ, 85287, United States

Received  February 2010 Revised  May 2010 Published  October 2010

In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistationary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS (Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, $R_0$ and the server utilization, $\rho$.
Citation: Carlos M. Hernández-Suárez, Carlos Castillo-Chavez, Osval Montesinos López, Karla Hernández-Cuevas. An application of queuing theory to SIS and SEIS epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (4) : 809-823. doi: 10.3934/mbe.2010.7.809
References:
[1]

S. Ross, "Introduction to Probability Models,", Academic Press, (2007).

[2]

D. Kendall, Some problems in the theory of queues,, Journal of the Royal Statistical Society Series B (Methodological), 13 (1951), 151.

[3]

D. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain,, The Annals of Mathematical Statistics, 24 (1953), 338. doi: doi:10.1214/aoms/1177728975.

[4]

M. Kitaev, The M/G/1 processor-sharing model: Transient behavior,, Queueing Systems, 14 (1993), 239. doi: doi:10.1007/BF01158868.

[5]

H. Andersson and T. Britton, "Stochastic Epidemic Models and Their Statistical Analysis,", Springer Verlag, (2000).

[6]

T. Sellke, On the asymptotic distribution of the size of a stochastic epidemic,, J. Appl. Probab., 20 (1983), 390. doi: doi:10.2307/3213811.

[7]

F. Ball and P. Donnelly, Strong approximations for epidemic models,, Stochastic Processes and Their Applications, 55 (1995), 1. doi: doi:10.1016/0304-4149(94)00034-Q.

[8]

P. Trapman and M. Bootsma, A useful relationship between epidemiology and queueing theory: The distribution of the number of infectives at the moment of the first detection,, Mathematical Biosciences, 219 (2009), 15. doi: doi:10.1016/j.mbs.2009.02.001.

[9]

H. Andersson and B. Djehiche, A threshold limit theorem for the stochastic logistic epidemic,, J. Appl. Probab., 35 (1998), 662.

[10]

H. Andersson and T. Britton, Stochastic epidemics in dynamic populations: Quasi-stationarity and extinction,, J. Math. Biol., 41 (2000), 559. doi: doi:10.1007/s002850000060.

[11]

J. N. Darroch and E. Seneta, On quasi-stationary distributions in absorbing continuous-time finite Markov chains,, J. Appl. Probability, 4 (1967), 192. doi: doi:10.2307/3212311.

[12]

J. Cavender, Quasi-stationary distributions of birth-and-death processes,, Advances in Applied Probability, 10 (1978), 570. doi: doi:10.2307/1426635.

[13]

R. J. Kryscio and C. Lefèvre, On the extinction of the S-I-S stochastic logistic epidemic,, J. Appl. Probab., 26 (1989), 685. doi: doi:10.2307/3214374.

[14]

W. Kermack and A. McKendrick, Contributions to the mathematical theory of epidemics-iii. Further studies of the problem of endemicity,, Bulletin of Mathematical Biology, 53 (1991), 89.

[15]

R. H. Norden, On the distribution of the time to extinction in the stochastic logistic population model,, Adv. in Appl. Probab., 14 (1982), 687. doi: doi:10.2307/1427019.

[16]

I. Nåsell, On the quasi-stationary distribution of the stochastic logistic epidemic,, Math. Biosci., 156 (1999), 21. doi: doi:10.1016/S0025-5564(98)10059-7.

[17]

G. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic models of an epidemic,, Math. Biosci., 11 (1971), 261. doi: doi:10.1016/0025-5564(71)90087-3.

[18]

D. J. Bartholomew, Continuous time diffusion models with random duration of interest,, J. Mathematical Sociology, 4 (1976), 187. doi: doi:10.1080/0022250X.1976.9989853.

[19]

O. Ovaskainen, The quasistationary distribution of the stochastic logistic model,, J. Appl. Probab., 38 (2001), 898. doi: doi:10.1239/jap/1011994180.

[20]

I. Nåsell, On the quasi-stationary distribution of the Ross malaria model,, Mathematical Biosciences, 107 (1991). doi: doi:10.1016/0025-5564(91)90004-3.

[21]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11. doi: doi:10.1006/jtbi.2001.2328.

[22]

I. Nåsell, Stochastic models of some endemic infections,, Math. Biosci., 179 (2002), 1. doi: doi:10.1016/S0025-5564(02)00098-6.

[23]

C. Hernández-Suárez and C. Castillo-Chavez, A basic result on the integral for birth-death Markov processes,, Mathematical Biosciences, 161 (1999), 95. doi: doi:10.1016/S0025-5564(99)00034-6.

[24]

V. T. Stefanov and S. Wang, A note on integrals for birth-death processes,, Math. Biosci., 168 (2000), 161. doi: doi:10.1016/S0025-5564(00)00046-8.

[25]

F. Ball and V. T. Stefanov, Further approaches to computing fundamental characteristics of birth-death processes,, J. Appl. Probab., 38 (2001), 995. doi: doi:10.1239/jap/1011994187.

[26]

M. VanHoorn, Algorithms and approximations for queueing systems,, CWI Tract No. 8, (1984).

[27]

D. Cox, "Renewal Theory,", Monographs on Applied Probability and Statistics, (1962).

show all references

References:
[1]

S. Ross, "Introduction to Probability Models,", Academic Press, (2007).

[2]

D. Kendall, Some problems in the theory of queues,, Journal of the Royal Statistical Society Series B (Methodological), 13 (1951), 151.

[3]

D. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain,, The Annals of Mathematical Statistics, 24 (1953), 338. doi: doi:10.1214/aoms/1177728975.

[4]

M. Kitaev, The M/G/1 processor-sharing model: Transient behavior,, Queueing Systems, 14 (1993), 239. doi: doi:10.1007/BF01158868.

[5]

H. Andersson and T. Britton, "Stochastic Epidemic Models and Their Statistical Analysis,", Springer Verlag, (2000).

[6]

T. Sellke, On the asymptotic distribution of the size of a stochastic epidemic,, J. Appl. Probab., 20 (1983), 390. doi: doi:10.2307/3213811.

[7]

F. Ball and P. Donnelly, Strong approximations for epidemic models,, Stochastic Processes and Their Applications, 55 (1995), 1. doi: doi:10.1016/0304-4149(94)00034-Q.

[8]

P. Trapman and M. Bootsma, A useful relationship between epidemiology and queueing theory: The distribution of the number of infectives at the moment of the first detection,, Mathematical Biosciences, 219 (2009), 15. doi: doi:10.1016/j.mbs.2009.02.001.

[9]

H. Andersson and B. Djehiche, A threshold limit theorem for the stochastic logistic epidemic,, J. Appl. Probab., 35 (1998), 662.

[10]

H. Andersson and T. Britton, Stochastic epidemics in dynamic populations: Quasi-stationarity and extinction,, J. Math. Biol., 41 (2000), 559. doi: doi:10.1007/s002850000060.

[11]

J. N. Darroch and E. Seneta, On quasi-stationary distributions in absorbing continuous-time finite Markov chains,, J. Appl. Probability, 4 (1967), 192. doi: doi:10.2307/3212311.

[12]

J. Cavender, Quasi-stationary distributions of birth-and-death processes,, Advances in Applied Probability, 10 (1978), 570. doi: doi:10.2307/1426635.

[13]

R. J. Kryscio and C. Lefèvre, On the extinction of the S-I-S stochastic logistic epidemic,, J. Appl. Probab., 26 (1989), 685. doi: doi:10.2307/3214374.

[14]

W. Kermack and A. McKendrick, Contributions to the mathematical theory of epidemics-iii. Further studies of the problem of endemicity,, Bulletin of Mathematical Biology, 53 (1991), 89.

[15]

R. H. Norden, On the distribution of the time to extinction in the stochastic logistic population model,, Adv. in Appl. Probab., 14 (1982), 687. doi: doi:10.2307/1427019.

[16]

I. Nåsell, On the quasi-stationary distribution of the stochastic logistic epidemic,, Math. Biosci., 156 (1999), 21. doi: doi:10.1016/S0025-5564(98)10059-7.

[17]

G. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic models of an epidemic,, Math. Biosci., 11 (1971), 261. doi: doi:10.1016/0025-5564(71)90087-3.

[18]

D. J. Bartholomew, Continuous time diffusion models with random duration of interest,, J. Mathematical Sociology, 4 (1976), 187. doi: doi:10.1080/0022250X.1976.9989853.

[19]

O. Ovaskainen, The quasistationary distribution of the stochastic logistic model,, J. Appl. Probab., 38 (2001), 898. doi: doi:10.1239/jap/1011994180.

[20]

I. Nåsell, On the quasi-stationary distribution of the Ross malaria model,, Mathematical Biosciences, 107 (1991). doi: doi:10.1016/0025-5564(91)90004-3.

[21]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11. doi: doi:10.1006/jtbi.2001.2328.

[22]

I. Nåsell, Stochastic models of some endemic infections,, Math. Biosci., 179 (2002), 1. doi: doi:10.1016/S0025-5564(02)00098-6.

[23]

C. Hernández-Suárez and C. Castillo-Chavez, A basic result on the integral for birth-death Markov processes,, Mathematical Biosciences, 161 (1999), 95. doi: doi:10.1016/S0025-5564(99)00034-6.

[24]

V. T. Stefanov and S. Wang, A note on integrals for birth-death processes,, Math. Biosci., 168 (2000), 161. doi: doi:10.1016/S0025-5564(00)00046-8.

[25]

F. Ball and V. T. Stefanov, Further approaches to computing fundamental characteristics of birth-death processes,, J. Appl. Probab., 38 (2001), 995. doi: doi:10.1239/jap/1011994187.

[26]

M. VanHoorn, Algorithms and approximations for queueing systems,, CWI Tract No. 8, (1984).

[27]

D. Cox, "Renewal Theory,", Monographs on Applied Probability and Statistics, (1962).

[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929

[4]

Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

[5]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5/6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[6]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[7]

Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915

[8]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[9]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[10]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[11]

Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445

[12]

Christine K. Yang, Fred Brauer. Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences & Engineering, 2008, 5 (3) : 585-599. doi: 10.3934/mbe.2008.5.585

[13]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[14]

Benjamin H. Singer, Denise E. Kirschner. Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences & Engineering, 2004, 1 (1) : 81-93. doi: 10.3934/mbe.2004.1.81

[15]

Lifeng Chen, Jifa Jiang. Stochastic epidemic models driven by stochastic algorithms with constant step. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 721-736. doi: 10.3934/dcdsb.2016.21.721

[16]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[17]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[18]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[19]

Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127

[20]

Napoleon Bame, Samuel Bowong, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Global stability analysis for SEIS models with n latent classes. Mathematical Biosciences & Engineering, 2008, 5 (1) : 20-33. doi: 10.3934/mbe.2008.5.20

[Back to Top]