2011, 4(1): 193-207. doi: 10.3934/dcdss.2011.4.193

A mathematical model of a criminal-prone society

1. 

Departamento de Matemática Aplicada a los Recursos Naturales, E.T.S.I. Montes. Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. 

IMI and Departamento de Matemática Aplicada. Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

3. 

Dipartimento di Matematica, università degli Studi di Firenze, 55015 Firenze, Italy

Received  November 2008 Revised  April 2009 Published  October 2010

Criminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-of-criminals steady state is unstable under small perturbations of a certain socio-economical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at risk.
Citation: Juan Carlos Nuño, Miguel Angel Herrero, Mario Primicerio. A mathematical model of a criminal-prone society. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 193-207. doi: 10.3934/dcdss.2011.4.193
References:
[1]

R. A. Araujo and T. B. S. Moreira, A dynamic model of production and traffic of drugs,, Economic Letters, 82 (2004), 371. doi: doi:10.1016/j.econlet.2003.09.015.

[2]

A. A. Berryman, The origins and evolution of predator-prey theory,, Ecology, 73 (1992), 1530. doi: doi:10.2307/1940005.

[3]

M. Campbell and P. Ormerod, Social interactions and the dynamics of crime,, , ().

[4]

E. Durkheim, "Le Crime PhÉnomène Normal. Les Regles de la Méthode Sociologique,", Paris 14 ed. 1960, (1960), 65.

[5]

J. Eck, Police problems: The complexity of problem theory, research and evaluation,, in, 15 (2003).

[6]

M. Felson, "Crime and Nature,", Sage Publications Inc., (2006).

[7]

L. E. Cohen and M. Felson, Social change and crime rate trends: A routine activity approach,, American Sociological Review, 44 (1979), 588. doi: doi:10.2307/2094589.

[8]

C. Lewis (ed.), "Modelling Crime and Offending: Recent Developments in England and Wales,", Occasional paper no. 80, (2003).

[9]

S. Kanazawa and M. C. Still, Why men commit crimes (and why they desist),, Sociological Theory, 18 (2000), 434. doi: doi:10.1111/0735-2751.00110.

[10]

J. C. Nuño, M. A. Herrero and M. Primicerio, A triangle model of criminality,, Physica A, 387 (2008), 2926.

[11]

K. Pease, Science in the service of crime reduction,, in, (2005).

[12]

L. J. Peter and R. Hull, "The Peter Principle. Why Things Always Go Wrong,", William Morrow & Co, (1969).

[13]

A. Quetelet, "Sur L'homme et le Developpement de ses Facultes, ou Essai de Physique Sociale,", Bachelier, (1835).

[14]

L. Real, The kinetics of functional response,, American Naturalist, 111 (1977), 289. doi: doi:10.1086/283161.

[15]

S. Pierazzini, Effect of crimes on a socially structured population,, preprint, ().

[16]

J. E. Strassmann, Rank crime and punishment,, Nature, 432 (2004), 160. doi: doi:10.1038/432160b.

[17]

L. G. Vargo, A note on crime control,, Bull. Math. Biophys., 28 (1966), 375. doi: doi:10.1007/BF02476819.

[18]

H. Zhao, F. Zhilan and C. Castillo-Chavez, The dynamics of poverty and crime,, MTBI-02-08M, (2002), 02.

show all references

References:
[1]

R. A. Araujo and T. B. S. Moreira, A dynamic model of production and traffic of drugs,, Economic Letters, 82 (2004), 371. doi: doi:10.1016/j.econlet.2003.09.015.

[2]

A. A. Berryman, The origins and evolution of predator-prey theory,, Ecology, 73 (1992), 1530. doi: doi:10.2307/1940005.

[3]

M. Campbell and P. Ormerod, Social interactions and the dynamics of crime,, , ().

[4]

E. Durkheim, "Le Crime PhÉnomène Normal. Les Regles de la Méthode Sociologique,", Paris 14 ed. 1960, (1960), 65.

[5]

J. Eck, Police problems: The complexity of problem theory, research and evaluation,, in, 15 (2003).

[6]

M. Felson, "Crime and Nature,", Sage Publications Inc., (2006).

[7]

L. E. Cohen and M. Felson, Social change and crime rate trends: A routine activity approach,, American Sociological Review, 44 (1979), 588. doi: doi:10.2307/2094589.

[8]

C. Lewis (ed.), "Modelling Crime and Offending: Recent Developments in England and Wales,", Occasional paper no. 80, (2003).

[9]

S. Kanazawa and M. C. Still, Why men commit crimes (and why they desist),, Sociological Theory, 18 (2000), 434. doi: doi:10.1111/0735-2751.00110.

[10]

J. C. Nuño, M. A. Herrero and M. Primicerio, A triangle model of criminality,, Physica A, 387 (2008), 2926.

[11]

K. Pease, Science in the service of crime reduction,, in, (2005).

[12]

L. J. Peter and R. Hull, "The Peter Principle. Why Things Always Go Wrong,", William Morrow & Co, (1969).

[13]

A. Quetelet, "Sur L'homme et le Developpement de ses Facultes, ou Essai de Physique Sociale,", Bachelier, (1835).

[14]

L. Real, The kinetics of functional response,, American Naturalist, 111 (1977), 289. doi: doi:10.1086/283161.

[15]

S. Pierazzini, Effect of crimes on a socially structured population,, preprint, ().

[16]

J. E. Strassmann, Rank crime and punishment,, Nature, 432 (2004), 160. doi: doi:10.1038/432160b.

[17]

L. G. Vargo, A note on crime control,, Bull. Math. Biophys., 28 (1966), 375. doi: doi:10.1007/BF02476819.

[18]

H. Zhao, F. Zhilan and C. Castillo-Chavez, The dynamics of poverty and crime,, MTBI-02-08M, (2002), 02.

[1]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[2]

Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735

[3]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[4]

Naveen K. Vaidya, Feng-Bin Wang, Xingfu Zou. Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2829-2848. doi: 10.3934/dcdsb.2012.17.2829

[5]

Nicola Bellomo, Miguel A. Herrero, Andrea Tosin. On the dynamics of social conflicts: Looking for the black swan. Kinetic & Related Models, 2013, 6 (3) : 459-479. doi: 10.3934/krm.2013.6.459

[6]

Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011

[7]

Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i

[8]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[9]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

[10]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[11]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[12]

Clinton Innes, Razvan C. Fetecau, Ralf W. Wittenberg. Modelling heterogeneity and an open-mindedness social norm in opinion dynamics. Networks & Heterogeneous Media, 2017, 12 (1) : 59-92. doi: 10.3934/nhm.2017003

[13]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[14]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[15]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[16]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[17]

Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial & Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385

[18]

Chongyang Liu, Zhaohua Gong, Enmin Feng, Hongchao Yin. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial & Management Optimization, 2009, 5 (4) : 835-850. doi: 10.3934/jimo.2009.5.835

[19]

Yuting Ding, Jinli Xu, Jun Cao, Dongyan Zhang. Mathematical modeling about nonlinear delayed hydraulic cylinder system and its analysis on dynamical behaviors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 943-958. doi: 10.3934/dcdss.2017049

[20]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (8)

[Back to Top]