2010, 4(4): 693-702. doi: 10.3934/ipi.2010.4.693

Remarks on the general Funk transform and thermoacoustic tomography

1. 

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel

Received  June 2009 Published  September 2010

We discuss properties of a generalized Minkowski-Funk transform defined for a family of hypersurfaces. We prove two-side estimates and show that the range conditions can be written in terms of the reciprocal Funk transform. Some applications to the spherical mean transform are considered.
Citation: Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693
References:
[1]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344. doi: doi:10.1016/j.jfa.2007.03.022.

[2]

J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.

[3]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923. doi: doi:10.1088/0266-5611/22/3/012.

[4]

P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278. doi: doi:10.1007/BF01456044.

[5]

V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).

[7]

M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.

[8]

R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.

[9]

F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).

[10]

S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.

[11]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).

[12]

D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270. doi: doi:10.1023/A:1013126507543.

[13]

D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254. doi: doi:10.1023/B:PRIT.0000044261.87490.05.

[14]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.

[15]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781. doi: doi:10.1088/0266-5611/20/3/008.

show all references

References:
[1]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344. doi: doi:10.1016/j.jfa.2007.03.022.

[2]

J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.

[3]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923. doi: doi:10.1088/0266-5611/22/3/012.

[4]

P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278. doi: doi:10.1007/BF01456044.

[5]

V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).

[7]

M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.

[8]

R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.

[9]

F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).

[10]

S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.

[11]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).

[12]

D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270. doi: doi:10.1023/A:1013126507543.

[13]

D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254. doi: doi:10.1023/B:PRIT.0000044261.87490.05.

[14]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.

[15]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781. doi: doi:10.1088/0266-5611/20/3/008.

[1]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[2]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[3]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[4]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[5]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[6]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[7]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[8]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

[9]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[10]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[11]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[12]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[13]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[14]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[15]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[16]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[17]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[18]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[19]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[20]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]