2010, 4(3): 523-545. doi: 10.3934/ipi.2010.4.523

A two-level domain decomposition method for image restoration

1. 

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore

Received  August 2009 Revised  November 2009 Published  July 2010

Image restoration has drawn much attention in recent years and a surge of research has been done on variational models and their numerical studies. However, there remains an urgent need to develop fast and robust methods for solving the minimization problems and the underlying nonlinear PDEs to process images of moderate to large size. This paper aims to propose a two-level domain decomposition method, which consists of an overlapping domain decomposition technique and a coarse mesh correction, for directly solving the total variational minimization problems. The iterative algorithm leads to a system of small size and better conditioning in each subspace, and is accelerated with a piecewise linear coarse mesh correction. Various numerical experiments and comparisons demonstrate that the proposed method is fast and robust particularly for images of large size.
Citation: Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523
[1]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[2]

Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems & Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455

[3]

Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems & Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323

[4]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[5]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[6]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[7]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[8]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems & Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[9]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[10]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[11]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[12]

Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems & Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661

[13]

Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems & Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733

[14]

Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems & Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027

[15]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[16]

Ronny Bergmann, Raymond H. Chan, Ralf Hielscher, Johannes Persch, Gabriele Steidl. Restoration of manifold-valued images by half-quadratic minimization. Inverse Problems & Imaging, 2016, 10 (2) : 281-304. doi: 10.3934/ipi.2016001

[17]

Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems & Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171

[18]

Bartomeu Coll, Joan Duran, Catalina Sbert. Half-linear regularization for nonconvex image restoration models. Inverse Problems & Imaging, 2015, 9 (2) : 337-370. doi: 10.3934/ipi.2015.9.337

[19]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[20]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]