2010, 14(1): 41-74. doi: 10.3934/dcdsb.2010.14.41

A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples

1. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

2. 

Departament de Matemátiques, Universitat Autónoma de Barcelona, Edifici C, 08193 Bellaterra (Barcelona), Spain

Received  September 2009 Revised  January 2010 Published  April 2010

The purpose of this paper is to develop a numerical procedure for the determination of frequencies and amplitudes of a quasi--periodic function, starting from equally-spaced samples of it on a finite time interval. It is based on a collocation method in frequency domain. Strategies for the choice of the collocation harmonics are discussed, in order to ensure good conditioning of the resulting system of equations. The accuracy and robustness of the procedure is checked with several examples. The paper is ended with two applications of its use as a dynamical indicator. The theoretical support for the method presented here is given in a companion paper [21].
Citation: Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41
[1]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[2]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[3]

Anthony W. Baker, Michael Dellnitz, Oliver Junge. Topological method for rigorously computing periodic orbits using Fourier modes. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 901-920. doi: 10.3934/dcds.2005.13.901

[4]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[5]

Zhongying Chen, Bin Wu, Yuesheng Xu. Fast numerical collocation solutions of integral equations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 643-666. doi: 10.3934/cpaa.2007.6.643

[6]

Carl Bracken, Zhengbang Zha. On the Fourier spectra of the infinite families of quadratic APN functions. Advances in Mathematics of Communications, 2009, 3 (3) : 219-226. doi: 10.3934/amc.2009.3.219

[7]

Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems & Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151

[8]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[9]

Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems & Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885

[10]

Ali Gholami, Mauricio D. Sacchi. Time-invariant Radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[11]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[12]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[13]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2/3) : 569-595. doi: 10.3934/dcds.2007.18.569

[14]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[15]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[16]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[17]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 75-88. doi: 10.3934/dcds.2004.10.75

[18]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[19]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[20]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (14)

[Back to Top]