• Previous Article
    Feedback limited opportunistic scheduling and admission control for ergodic rate guarantees over Nakagami-$m$ fading channels
  • JIMO Home
  • This Issue
  • Next Article
    A penalty function algorithm with objective parameters for nonlinear mathematical programming
2009, 5(3): 569-584. doi: 10.3934/jimo.2009.5.569

Human resource management using working time accounts with expiry of hours

1. 

IOC Research Institute - Technical University of Catalonia, Av. Diagonal 647, 11th floor, 08028, Barcelona, Spain, Spain, Spain

Received  January 2008 Revised  October 2008 Published  June 2009

Herein is presented a human resource management system based on a working time account (WTA) in which accumulated hours expire after a certain date, whether those owed by the employee to the company, or vice versa. The condition of hours-expiry limits flexibility but protects workers. The consideration of this feature enables modelling of many current industrial scenarios, at the expense of complicating the use of WTAs and hugely increasing the size of the models. A staff planning problem from the services industry is modelled and solved through mathematical programming, and the approach is shown to be efficient for realistic staff sizes. Lastly, a variety of scenarios are presented, for which the financial benefit generated by WTAs is calculated and possible compensations for workers are explored.
Citation: Albert Corominas, Amaia Lusa, Rafael Pastor. Human resource management using working time accounts with expiry of hours. Journal of Industrial & Management Optimization, 2009, 5 (3) : 569-584. doi: 10.3934/jimo.2009.5.569
[1]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[2]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[3]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[4]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[5]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[6]

Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 1-17. doi: 10.3934/jimo.2017034

[7]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[8]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[9]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[10]

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial & Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587

[11]

Tzu-Li Chen, James T. Lin, Shu-Cherng Fang. A shadow-price based heuristic for capacity planning of TFT-LCD manufacturing. Journal of Industrial & Management Optimization, 2010, 6 (1) : 209-239. doi: 10.3934/jimo.2010.6.209

[12]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[13]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[14]

Y. Charles Li, Hong Yang. On the arrow of time. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1287-1303. doi: 10.3934/dcdss.2014.7.1287

[15]

Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial & Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31

[16]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[17]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[18]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[19]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[20]

Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure & Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]