2009, 1(1): 35-53. doi: 10.3934/jgm.2009.1.35

$G$-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball

1. 

Section de Mathematiques, Station 8, EPFL, CH-1015 Lausanne, Switzerland, Switzerland

Received  November 2008 Revised  March 2009 Published  April 2009

Via compression ([18, 8]) we write the $n$-dimensional Chaplygin sphere system as an almost Hamiltonian system on T*$\SO(n)$ with internal symmetry group $\SO(n-1)$. We show how this symmetry group can be factored out, and pass to the fully reduced system on (a fiber bundle over) T*$S^{n-1}$. This approach yields an explicit description of the reduced system in terms of the geometric data involved. Due to this description we can study Hamiltonizability of the system. It turns out that the homogeneous Chaplygin ball, which is not Hamiltonian at the T*$\SO(n)$-level, is Hamiltonian at the T*$S^{n-1}$-level. Moreover, the $3$-dimensional ball becomes Hamiltonian at the T*$S^{2}$-level after time reparametrization, whereby we re-prove a result of [4, 5] in symplecto-geometric terms. We also study compression followed by reduction of generalized Chaplygin systems.
Citation: Simon Hochgerner, Luis García-Naranjo. $G$-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball. Journal of Geometric Mechanics, 2009, 1 (1) : 35-53. doi: 10.3934/jgm.2009.1.35
[1]

E. Minguzzi. A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena. Journal of Geometric Mechanics, 2015, 7 (4) : 473-482. doi: 10.3934/jgm.2015.7.473

[2]

Panayotis G. Kevrekidis, Vakhtang Putkaradze, Zoi Rapti. Non-holonomic constraints and their impact on discretizations of Klein-Gordon lattice dynamical models. Conference Publications, 2015, 2015 (special) : 696-704. doi: 10.3934/proc.2015.0696

[3]

Luis García-Naranjo. Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 37-60. doi: 10.3934/dcdss.2010.3.37

[4]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[5]

Andrey Tsiganov. Integrable Euler top and nonholonomic Chaplygin ball. Journal of Geometric Mechanics, 2011, 3 (3) : 337-362. doi: 10.3934/jgm.2011.3.337

[6]

Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427

[7]

Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335

[8]

Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701

[9]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[10]

Dongfeng Zhang, Junxiang Xu. On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 635-655. doi: 10.3934/dcds.2006.16.635

[11]

Huawen Ye, Honglei Xu. Global stabilization for ball-and-beam systems via state and partial state feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 17-29. doi: 10.3934/jimo.2016.12.17

[12]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[13]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[14]

Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937

[15]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[16]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[17]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[18]

Nicolas Boizot, Jean-Paul Gauthier. On the motion planning of the ball with a trailer. Mathematical Control & Related Fields, 2013, 3 (3) : 269-286. doi: 10.3934/mcrf.2013.3.269

[19]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[20]

Vincent Guyonne, Luca Lorenzi. Instability in a flame ball problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 315-350. doi: 10.3934/dcdsb.2007.7.315

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]