• Previous Article
    Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency
  • CPAA Home
  • This Issue
  • Next Article
    Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions
2008, 7(4): 905-923. doi: 10.3934/cpaa.2008.7.905

On the existence of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition

1. 

Department of Mathematics, Pusan National University, Pusan 609-735, South Korea

Received  July 2007 Revised  February 2008 Published  April 2008

We obtain the existence results of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition:

$\varphi (u'(t))' + \lambda h(t) f (u(t)) = 0,\ \ $ a.e. $\ t \in (0,1), \qquad\qquad\qquad\qquad\qquad $ $(\Phi_\lambda)$

$u(0) = 0=u(1),$

where $\varphi : \mathbb R \to \mathbb R$ is an odd increasing homeomorphism, $\lambda$ a positive parameter and $h \in L^1(0,1)$ a nonnegative measurable function on $(0,1)$ which may be singular at $t = 0$ and/or $t = 1,$ and $f \in C(\mathbb R, \mathbb R)$ and is odd.

Citation: Inbo Sim. On the existence of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition. Communications on Pure & Applied Analysis, 2008, 7 (4) : 905-923. doi: 10.3934/cpaa.2008.7.905
[1]

Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671

[2]

Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027

[3]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515

[4]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[5]

Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 167-190. doi: 10.3934/dcds.2012.32.167

[6]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

[7]

Franco Obersnel, Pierpaolo Omari. Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 305-320. doi: 10.3934/dcds.2013.33.305

[8]

Denis Mercier, Serge Nicaise. Existence results for general systems of differential equations on one-dimensional networks and prewavelets approximation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 273-300. doi: 10.3934/dcds.1998.4.273

[9]

François James, Nicolas Vauchelet. One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 163-180. doi: 10.3934/nhm.2016.11.163

[10]

Steinar Evje, Huanyao Wen, Lei Yao. Global solutions to a one-dimensional non-conservative two-phase model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1927-1955. doi: 10.3934/dcds.2016.36.1927

[11]

Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191

[12]

Sebastian van Strien. One-dimensional dynamics in the new millennium. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 557-588. doi: 10.3934/dcds.2010.27.557

[13]

Maria João Costa. Chaotic behaviour of one-dimensional horseshoes. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 505-548. doi: 10.3934/dcds.2003.9.505

[14]

Yunping Jiang. On a question of Katok in one-dimensional case. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209

[15]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[16]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[17]

James Nolen, Jack Xin. KPP fronts in a one-dimensional random drift. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 421-442. doi: 10.3934/dcdsb.2009.11.421

[18]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[19]

Guowei Dai, Ruyun Ma, Haiyan Wang. Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2839-2872. doi: 10.3934/cpaa.2013.12.2839

[20]

Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]