2006, 16(1): 1-18. doi: 10.3934/dcds.2006.16.1

Pointwise asymptotic convergence of solutions for a phase separation model

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D–10117 Berlin

2. 

Institute of Mathematics, Fudan University, Shanghai 200433, China

Received  September 2005 Revised  February 2006 Published  June 2006

A new technique, combining the global energy and entropy balance equations with the local stability theory for dynamical systems, is used for proving that every solution to a non-smooth temperature-driven phase separation model with conserved energy converges pointwise in space to an equilibrium as time tends to infinity. Three main features are observed: the limit temperature is uniform in space, there exists a partition of the physical body into at most three constant limit phases, and the phase separation process has a hysteresis-like character.
Citation: Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1
[1]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[2]

Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505

[3]

Christian Heinemann, Christiane Kraus. Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2565-2590. doi: 10.3934/dcds.2015.35.2565

[4]

Alain Miranville, Giulio Schimperna. Nonisothermal phase separation based on a microforce balance. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 753-768. doi: 10.3934/dcdsb.2005.5.753

[5]

Giacomo Canevari, Pierluigi Colli. Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1959-1982. doi: 10.3934/cpaa.2012.11.1959

[6]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[7]

Kota Kumazaki, Akio Ito, Masahiro Kubo. Generalized solutions of a non-isothermal phase separation model. Conference Publications, 2009, 2009 (Special) : 476-485. doi: 10.3934/proc.2009.2009.476

[8]

Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483

[9]

Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889

[10]

Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791

[11]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[12]

Alain Miranville. Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1971-1987. doi: 10.3934/cpaa.2014.13.1971

[13]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn--Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[14]

Nicolas Lecoq, Helena Zapolsky, P.K. Galenko. Numerical approximation of the Chan-Hillard equation with memory effects in the dynamics of phase separation. Conference Publications, 2011, 2011 (Special) : 953-962. doi: 10.3934/proc.2011.2011.953

[15]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[16]

Xiongping Dai, Yunping Jiang. Distance entropy of dynamical systems on noncompact-phase spaces. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 313-333. doi: 10.3934/dcds.2008.20.313

[17]

Andrey Yu. Verisokin, Darya V. Verveyko, Eugene B. Postnikov, Anastasia I. Lavrova. Wavelet analysis of phase clusters in a distributed biochemical system. Conference Publications, 2011, 2011 (Special) : 1404-1412. doi: 10.3934/proc.2011.2011.1404

[18]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[19]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[20]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]