
Previous Article
The risk index for an SIR epidemic model and spatial spreading of the infectious disease
 MBE Home
 This Issue
 Next Article
Modeling and analyzing the transmission dynamics of visceral leishmaniasis
1.  Department of Mathematics Sichuan University Chengdu, Sichuan 610064, China 
2.  Department of Mathematics University of Miami Coral Gables, FL 33146, USA, United States 
In this paper, we develop a mathematical model to study the transmission dynamics of visceral leishmaniasis. Three populations: dogs, sandflies and humans, are considered in the model. Based on recent studies, we include vertical transmission of dogs in the spread of the disease. We also investigate the impact of asymptomatic humans and dogs as secondary reservoirs of the parasites. The basic reproduction number and sensitivity analysis show that the control of dogsandfly transmission is more important for the elimination of the disease. Vaccination of susceptible dogs, treatment of infective dogs, as well as control of vertical transmission in dogs are effective prevention and control measures for visceral leishmaniasis.
References:
[1] 
D. A. Ashford, J. R. David, M. Freire, R. David, I. Sherlock, M. D. C. Eulalio, D. P. Sampaio, R. Badaro, Studies on control of visceral leishmaniasis: Impact of dog control on canine and human visceral leishmaniasis in Jacobina, Bahia, Brazil, Am. J. Trop. Med. Hyg., 59 (1998), 5357. 
[2] 
P. M. Boggiatto, K. N. GibsonCorley and K. Metz, et. al. , Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America PLoS Negl. Trop. Dis. 5 (2011), e1019. 
[3] 
P. M. Boggiatto, A. E. RamerTait, K. Metz, Immunologic indicators of clinical progression during canine Leishmania infantum infection, Clin. Vaccine Immunol., 17 (2010), 267273. doi: 10.1128/CVI.0045609. 
[4] 
M. N. Burrattini, F. B. A. Cuoutinho, L. F. Lopez, E. Massad, Modeling the dynamics of leishmaniasis considering human, animal host and vector populations, J. Biol. Sys., 6 (1998), 337356. 
[5] 
Chinese Center for Disease Control and Prevention, Public Health Data Center, 20042013, Available from: http://www.phsciencedata.cn/Share/index.jsp. 
[6] 
O. Courtenay, C. Carson, L. CalvoBado, L. M. Garcez and R. J. Quinnell, Heterogeneities in Leishmania infantum infection: using skin parasite burdens to identify highly infectious dogs PLoS Negl. Trop. Dis. 8 (2014), e2583. 
[7] 
C. Dye, The logic of visceral leishmaniasis control, Am. J. Trop. Med. Hyg., 55 (1996), 125130. 
[8] 
I. M. ELmojtaba, J. Y. T. Mugisha, M. H. A. Hashim, Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan, Appl. Math. Comput., 217 (2010), 25672578. doi: 10.1016/j.amc.2010.07.069. 
[9] 
K. J. Esch, N. N. Pontes, P. Arruda, A. O'Connor, L. Morais, S. M. Jeronimo, C. A. Petersen, Preventing zoonotic canine leishmaniasis in northeastern Brazil: Pet attachment and adoption of community leishmania prevention, Am. J. Trop. Med. Hyg., 87 (2012), 822831. doi: 10.4269/ajtmh.2012.120251. 
[10] 
L. Gradoni, Canine leishmania vaccines: Still a long way to go, Vet. Parasitol., 208 (2015), 94100. doi: 10.1016/j.vetpar.2015.01.003. 
[11] 
T. GrinnagePulley, B. Scott and C. A. Petersen, A mother's gift: Congenital transmission of Trypanosoma and Leishmania species PLoS Pathog. 12 (2016), e1005302. 
[12] 
N. Hartemink, S. O. Vanwambeke, H. Heesterbeek, D. Rogers, D. Morley, B. Pesson, C. Davies, S. Mahamdallie and P. Ready, Integrated mapping of establishment risk for emerging vectorborne infections: A case study of canine leishmaniasis in southwest France PLoS One 6 (2011), e20817. 
[13] 
G. Hasibeder, C. Dye, J. Carpenter, Mathematical modeling and theory for estimating the basic reproduction number of canine leishmaniasis, Parasitol., 105 (1992), 4353. 
[14] 
Imperial College London, Theoretical Immunology Group Resources, Sand fly fact sheet, Available from: http://wwwf.imperial.ac.uk/theoreticalimmunology/exhibit2010/pdf/fssandflies.pdf. 
[15] 
S. F. Kerr, W. E. Grant, N. O. Dronen Jr, A simulation model of the infection cycle of Leishmania mexicana in Neotoma microbus, Ecol. Model., 98 (1997), 187197. 
[16] 
Länger, et. al. , Modeling of leishmaniasis infection dynamics: Novel application to the design of effective therapies, BMC Syst. Biol. 6 (2012), 1. 
[17] 
I. D. Lima, J. W. Queiroz, H. G. Lacerda, Leishmania infantum chagasi in northeastern Brazil: Asymptomatic infection at the urban perimeter, Am. J. Trop. Med. Hyg., 86 (2012), 99107. doi: 10.4269/ajtmh.2012.100492. 
[18] 
L. V. R. Lima, L. A. Carneiro, M. B. Campos, Canine visceral leishmaniasis due to Leishmania (L.) infantum chagasi in Amazonian Brazil: comparison of the parasite density from the skin, lymph node and visceral tissues between symptomatic and asymptomatic, seropositive dogs, Revista Institut. Med. Trop. Sao Paulo, 52 (2010), 259265. 
[19] 
G. Michel, C. Pomares, B. Ferrua, P. Marty, Importance of worldwide asymptomatic carriers of leishmania infantum (L. chagasi) in human, Acta Trop., 119 (2011), 6975. doi: 10.1016/j.actatropica.2011.05.012. 
[20] 
R. Molina, J. M. Lohse, F. Pulido, Infection of sandflies by humans coinfected with leishmania infantum and human immuneodeficiency virus, Amer. J. Trop. Med. Hyg., 60 (1999), 5153. 
[21] 
T. J. Naucke, S. Lorentz, Nonsandfly transmission of canine leishmaniasis, Tieraerztliche Umschau, 68 (2013), 121125. 
[22] 
C. B. PalatnikdeSousa, I. SilvaAntunes, A. Morgado, I. Menz, M. Palatnik, C. Lavor, Decrease of the incidence of human and canine visceral leishmaniasis after dog vaccination with leishmune in Brazilian endemic areas, Vaccine, 27 (2009), 35053512. doi: 10.1016/j.vaccine.2009.03.045. 
[23] 
R. Reithinger, P. G. Coleman, B. Alexander, Are insecticideimpregnated dog collars a feasible alternative to dog culling as a atrategy for controlling canine visceral leishmaniasis in Brazil?, Int. J. Parasitol., 34 (2004), 5562. 
[24] 
G. A. Romero and M. Boelaert, Control of visceral leishmaniasis in Latin America a systematic revies, PLoS Negl. Trop. Dis. 4 (2010), e584. 
[25] 
A. Stauch, R. R. Sakar and A. Picado, et. al. , Visceral leishmaniasis in the Indian subcontinent: Modelling epidemiology and control PLoS Negl. Trop. Dis. 5 (2011), e1405. 
[26] 
P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. doi: 10.1016/S00255564(02)001086. 
[27] 
J. Wang, Y. Ha and C. Gao, et al. , The prevalence of canine Leishmania infantum infection in western China detected by PCR and serological tests Parasit. Vectors 4 (2011), 69. 
[28] 
J. Wang, C. Gao, Y. Yang, An outbreak of the desert subtype of zoonotic visceral leishmaniasis in Jiashi, Xinjiang Uygur Autonomous Region, People's Republic of China, Parasitol. Int., 59 (2010), 331337. doi: 10.1016/j.parint.2010.04.002. 
[29] 
The World Bank Group, Population, total, 2015, Available from: http://data.worldbank.org/indicator/SP.POP.TOTL?locations=BR. 
[30] 
World Health Organization, Number of cases of visceral leishmaniasis reported data by country, Available from: http://apps.who.int/gho/data/node.main.NTDLEISHVNUM?lang=en. 
[31] 
World Health Organization, Available from: http://www.who.int/leishmaniasis/resources/BRAZIL.pdf. 
[32] 
World Health Organization, World Health Organization, Leishmaniasis in highburden countries: An epidemiological update based on data reported in 2014, Weekly Epid. Record, 91 (2016), 287296. 
[33] 
S. Zhao, Y. Kuang, C. Wu, D. BenArieh, M. RamalhoOrtigao, K. Bi, Zoonotic visceral leishmaniasis transmission: Modeling, backward bifurcation, and optimal control, J. Math. Biol., 73 (2016), 15251560. doi: 10.1007/s002850160999z. 
show all references
References:
[1] 
D. A. Ashford, J. R. David, M. Freire, R. David, I. Sherlock, M. D. C. Eulalio, D. P. Sampaio, R. Badaro, Studies on control of visceral leishmaniasis: Impact of dog control on canine and human visceral leishmaniasis in Jacobina, Bahia, Brazil, Am. J. Trop. Med. Hyg., 59 (1998), 5357. 
[2] 
P. M. Boggiatto, K. N. GibsonCorley and K. Metz, et. al. , Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America PLoS Negl. Trop. Dis. 5 (2011), e1019. 
[3] 
P. M. Boggiatto, A. E. RamerTait, K. Metz, Immunologic indicators of clinical progression during canine Leishmania infantum infection, Clin. Vaccine Immunol., 17 (2010), 267273. doi: 10.1128/CVI.0045609. 
[4] 
M. N. Burrattini, F. B. A. Cuoutinho, L. F. Lopez, E. Massad, Modeling the dynamics of leishmaniasis considering human, animal host and vector populations, J. Biol. Sys., 6 (1998), 337356. 
[5] 
Chinese Center for Disease Control and Prevention, Public Health Data Center, 20042013, Available from: http://www.phsciencedata.cn/Share/index.jsp. 
[6] 
O. Courtenay, C. Carson, L. CalvoBado, L. M. Garcez and R. J. Quinnell, Heterogeneities in Leishmania infantum infection: using skin parasite burdens to identify highly infectious dogs PLoS Negl. Trop. Dis. 8 (2014), e2583. 
[7] 
C. Dye, The logic of visceral leishmaniasis control, Am. J. Trop. Med. Hyg., 55 (1996), 125130. 
[8] 
I. M. ELmojtaba, J. Y. T. Mugisha, M. H. A. Hashim, Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan, Appl. Math. Comput., 217 (2010), 25672578. doi: 10.1016/j.amc.2010.07.069. 
[9] 
K. J. Esch, N. N. Pontes, P. Arruda, A. O'Connor, L. Morais, S. M. Jeronimo, C. A. Petersen, Preventing zoonotic canine leishmaniasis in northeastern Brazil: Pet attachment and adoption of community leishmania prevention, Am. J. Trop. Med. Hyg., 87 (2012), 822831. doi: 10.4269/ajtmh.2012.120251. 
[10] 
L. Gradoni, Canine leishmania vaccines: Still a long way to go, Vet. Parasitol., 208 (2015), 94100. doi: 10.1016/j.vetpar.2015.01.003. 
[11] 
T. GrinnagePulley, B. Scott and C. A. Petersen, A mother's gift: Congenital transmission of Trypanosoma and Leishmania species PLoS Pathog. 12 (2016), e1005302. 
[12] 
N. Hartemink, S. O. Vanwambeke, H. Heesterbeek, D. Rogers, D. Morley, B. Pesson, C. Davies, S. Mahamdallie and P. Ready, Integrated mapping of establishment risk for emerging vectorborne infections: A case study of canine leishmaniasis in southwest France PLoS One 6 (2011), e20817. 
[13] 
G. Hasibeder, C. Dye, J. Carpenter, Mathematical modeling and theory for estimating the basic reproduction number of canine leishmaniasis, Parasitol., 105 (1992), 4353. 
[14] 
Imperial College London, Theoretical Immunology Group Resources, Sand fly fact sheet, Available from: http://wwwf.imperial.ac.uk/theoreticalimmunology/exhibit2010/pdf/fssandflies.pdf. 
[15] 
S. F. Kerr, W. E. Grant, N. O. Dronen Jr, A simulation model of the infection cycle of Leishmania mexicana in Neotoma microbus, Ecol. Model., 98 (1997), 187197. 
[16] 
Länger, et. al. , Modeling of leishmaniasis infection dynamics: Novel application to the design of effective therapies, BMC Syst. Biol. 6 (2012), 1. 
[17] 
I. D. Lima, J. W. Queiroz, H. G. Lacerda, Leishmania infantum chagasi in northeastern Brazil: Asymptomatic infection at the urban perimeter, Am. J. Trop. Med. Hyg., 86 (2012), 99107. doi: 10.4269/ajtmh.2012.100492. 
[18] 
L. V. R. Lima, L. A. Carneiro, M. B. Campos, Canine visceral leishmaniasis due to Leishmania (L.) infantum chagasi in Amazonian Brazil: comparison of the parasite density from the skin, lymph node and visceral tissues between symptomatic and asymptomatic, seropositive dogs, Revista Institut. Med. Trop. Sao Paulo, 52 (2010), 259265. 
[19] 
G. Michel, C. Pomares, B. Ferrua, P. Marty, Importance of worldwide asymptomatic carriers of leishmania infantum (L. chagasi) in human, Acta Trop., 119 (2011), 6975. doi: 10.1016/j.actatropica.2011.05.012. 
[20] 
R. Molina, J. M. Lohse, F. Pulido, Infection of sandflies by humans coinfected with leishmania infantum and human immuneodeficiency virus, Amer. J. Trop. Med. Hyg., 60 (1999), 5153. 
[21] 
T. J. Naucke, S. Lorentz, Nonsandfly transmission of canine leishmaniasis, Tieraerztliche Umschau, 68 (2013), 121125. 
[22] 
C. B. PalatnikdeSousa, I. SilvaAntunes, A. Morgado, I. Menz, M. Palatnik, C. Lavor, Decrease of the incidence of human and canine visceral leishmaniasis after dog vaccination with leishmune in Brazilian endemic areas, Vaccine, 27 (2009), 35053512. doi: 10.1016/j.vaccine.2009.03.045. 
[23] 
R. Reithinger, P. G. Coleman, B. Alexander, Are insecticideimpregnated dog collars a feasible alternative to dog culling as a atrategy for controlling canine visceral leishmaniasis in Brazil?, Int. J. Parasitol., 34 (2004), 5562. 
[24] 
G. A. Romero and M. Boelaert, Control of visceral leishmaniasis in Latin America a systematic revies, PLoS Negl. Trop. Dis. 4 (2010), e584. 
[25] 
A. Stauch, R. R. Sakar and A. Picado, et. al. , Visceral leishmaniasis in the Indian subcontinent: Modelling epidemiology and control PLoS Negl. Trop. Dis. 5 (2011), e1405. 
[26] 
P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. doi: 10.1016/S00255564(02)001086. 
[27] 
J. Wang, Y. Ha and C. Gao, et al. , The prevalence of canine Leishmania infantum infection in western China detected by PCR and serological tests Parasit. Vectors 4 (2011), 69. 
[28] 
J. Wang, C. Gao, Y. Yang, An outbreak of the desert subtype of zoonotic visceral leishmaniasis in Jiashi, Xinjiang Uygur Autonomous Region, People's Republic of China, Parasitol. Int., 59 (2010), 331337. doi: 10.1016/j.parint.2010.04.002. 
[29] 
The World Bank Group, Population, total, 2015, Available from: http://data.worldbank.org/indicator/SP.POP.TOTL?locations=BR. 
[30] 
World Health Organization, Number of cases of visceral leishmaniasis reported data by country, Available from: http://apps.who.int/gho/data/node.main.NTDLEISHVNUM?lang=en. 
[31] 
World Health Organization, Available from: http://www.who.int/leishmaniasis/resources/BRAZIL.pdf. 
[32] 
World Health Organization, World Health Organization, Leishmaniasis in highburden countries: An epidemiological update based on data reported in 2014, Weekly Epid. Record, 91 (2016), 287296. 
[33] 
S. Zhao, Y. Kuang, C. Wu, D. BenArieh, M. RamalhoOrtigao, K. Bi, Zoonotic visceral leishmaniasis transmission: Modeling, backward bifurcation, and optimal control, J. Math. Biol., 73 (2016), 15251560. doi: 10.1007/s002850160999z. 
Parameters  Interpretations 
Recruitment rate of susceptible dogs  
Recruitment rate of susceptible sandflies  
Recruitment rate of susceptible humans  
Average lifespan of dogs  
Average lifespan of sandflies  
Average lifespan of humans  
Prob. of transmission from infectious sandflies to dogs  
Prob. of transmission from exposed dogs to sandflies  
Prob. of transmission from infectious dogs to sandflies  
Prob. of transmission from infectious sandflies to humans  
Prob. of transmission from exposed humans to sandflies  
Prob. of transmission from infectious humans to sandflies  
Fraction of offspring of exposed dogs born to be exposed  
Fraction of offspring of infectious dogs born to be exposed  
Rate of biting on dogs by sandflies  
Rate of biting on humans by sandflies  
Incubation period in dogs  
Incubation period in sandflies  
Incubation period in humans  
Culling rate of exposed and infective dogs  
Vaccination rate of dogs  
Loss rate of vaccination in dogs  
Recovery rate of dogs  
Recovery rate of humans 
Parameters  Interpretations 
Recruitment rate of susceptible dogs  
Recruitment rate of susceptible sandflies  
Recruitment rate of susceptible humans  
Average lifespan of dogs  
Average lifespan of sandflies  
Average lifespan of humans  
Prob. of transmission from infectious sandflies to dogs  
Prob. of transmission from exposed dogs to sandflies  
Prob. of transmission from infectious dogs to sandflies  
Prob. of transmission from infectious sandflies to humans  
Prob. of transmission from exposed humans to sandflies  
Prob. of transmission from infectious humans to sandflies  
Fraction of offspring of exposed dogs born to be exposed  
Fraction of offspring of infectious dogs born to be exposed  
Rate of biting on dogs by sandflies  
Rate of biting on humans by sandflies  
Incubation period in dogs  
Incubation period in sandflies  
Incubation period in humans  
Culling rate of exposed and infective dogs  
Vaccination rate of dogs  
Loss rate of vaccination in dogs  
Recovery rate of dogs  
Recovery rate of humans 
Parameter  values  References 
8  [9,22]  
599 days  [7]  
73 years  [31]  
assumed  
[12]  
[12]  
[3]  
0.1 per day  [12]  
6 days  [25]  
0.69  [15]  
1/1095  assumed  
0.12  [12]  
2 million  [29]  
14 days  [14]  
[12]  
[12]  
assumed  
[3]  
0.1 per day  [12]  
10 days  [25]  
60 days  [25]  
0.165  [22]  
0.083  [15] 
Parameter  values  References 
8  [9,22]  
599 days  [7]  
73 years  [31]  
assumed  
[12]  
[12]  
[3]  
0.1 per day  [12]  
6 days  [25]  
0.69  [15]  
1/1095  assumed  
0.12  [12]  
2 million  [29]  
14 days  [14]  
[12]  
[12]  
assumed  
[3]  
0.1 per day  [12]  
10 days  [25]  
60 days  [25]  
0.165  [22]  
0.083  [15] 
[1] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[2] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[3] 
Hisashi Inaba. Mathematical analysis of an agestructured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 6996. doi: 10.3934/dcdsb.2006.6.69 
[4] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5/6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[5] 
Tsanou Berge, Samuel Bowong, Jean Lubuma, Martin Luther Mann Manyombe. Modeling Ebola Virus Disease Transmissions with Reservoir in a Complex Virus Life Ecology. Mathematical Biosciences & Engineering, 2018, 15 (1) : 2156. doi: 10.3934/mbe.2018002 
[6] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[7] 
Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 777788. doi: 10.3934/dcdsb.2004.4.777 
[8] 
Chandrani Banerjee, Linda J. S. Allen, Jorge SalazarBravo. Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences & Engineering, 2008, 5 (4) : 617645. doi: 10.3934/mbe.2008.5.617 
[9] 
Moatlhodi Kgosimore, Edward M. Lungu. The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Mathematical Biosciences & Engineering, 2006, 3 (2) : 297312. doi: 10.3934/mbe.2006.3.297 
[10] 
Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97113. doi: 10.3934/cpaa.2012.11.97 
[11] 
Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems  B, 2007, 7 (1) : 7786. doi: 10.3934/dcdsb.2007.7.77 
[12] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[13] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[14] 
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143164. doi: 10.3934/mbe.2017010 
[15] 
Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an agestructured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929945. doi: 10.3934/mbe.2014.11.929 
[16] 
Alexander Bobylev, Åsa Windfäll. Kinetic modeling of economic games with large number of participants. Kinetic & Related Models, 2011, 4 (1) : 169185. doi: 10.3934/krm.2011.4.169 
[17] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
[18] 
Kokum R. De Silva, Shigetoshi Eda, Suzanne Lenhart. Modeling environmental transmission of MAP infection in dairy cows. Mathematical Biosciences & Engineering, 2017, 14 (4) : 10011017. doi: 10.3934/mbe.2017052 
[19] 
Darja Kalajdzievska, Michael Yi Li. Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (3) : 711722. doi: 10.3934/mbe.2011.8.711 
[20] 
Jie Zhang, Shuang Lin, LiWei Zhang. A logexponential regularization method for a mathematical program with general vertical complementarity constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 561577. doi: 10.3934/jimo.2013.9.561 
2016 Impact Factor: 1.035
Tools
Metrics
Other articles
by authors
[Back to Top]