2017, 14(5-6): 1535-1563. doi: 10.3934/mbe.2017080

Threshold dynamics of a time periodic and two--group epidemic model with distributed delay

a. 

School of Mathematics and Statistics, Lanzhou University Lanzhou, Gansu 730000, China

b. 

Department of Applied Mathematics, Lanzhou University of Technology Lanzhou, Gansu 730050, China

* Corresponding author: Z.-C. Wang

Received  May 14, 2016 Revised  December 2016 Accepted  December 3 2016 Published  May 2017

In this paper, a time periodic and two–group reaction–diffusion epidemic model with distributed delay is proposed and investigated. We firstly introduce the basic reproduction number $R_0$ for the model via the next generation operator method. We then establish the threshold dynamics of the model in terms of $R_0$, that is, the disease is uniformly persistent if $R_0 > 1$, while the disease goes to extinction if $R_0 < 1$. Finally, we study the global dynamics for the model in a special case when all the coefficients are independent of spatio–temporal variables.

Citation: Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two--group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5-6) : 1535-1563. doi: 10.3934/mbe.2017080
References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Seasonality and the dynamics of infectious disease, Ecol. Lett., 9 (2006), 467-484. doi: 10.1111/j.1461-0248.2005.00879.x.

[2]

R. M. Anderson, Discussion: the Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol., 53 (1991), 3-32. doi: 10.1007/BF02464422.

[3]

R. M. Anderson and R. May, Infectious Diseases of Humanns: Dynamics and Control, Oxford University Press, Oxford, 1991.

[4]

N. Bacaër, D. Ait, H. El, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol., 62 (2011), 741-762. doi: 10.1007/s00285-010-0354-8.

[5]

N. Bacaër, S. Guernaoui, The epidemic threshold of vector–borne disease with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[6]

E. Beretta, T. Hara, W. Ma, Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115. doi: 10.1016/S0362-546X(01)00528-4.

[7]

B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet, Stability of differential susceptibility and infectivity epidemic models, J. Math. Biol., 62 (2011), 39-64. doi: 10.1007/s00285-010-0327-y.

[8]

F. Brauer, Compartmental models in epidemiology, Mathematical Epidemiology, Springer, 56 (2008), 19-79. doi: 10.1007/978-3-540-78911-6_2.

[9]

L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach space, Arch. Math., 56 (1991), 49-57. doi: 10.1007/BF01190081.

[10]

L. Cai, M. Martcheva, X.-Z. Li, Competitive exclusion in a vector-host epidemic model with distributed delay, J. Biol. Dyn., 7 (2013), 47-67. doi: 10.1080/17513758.2013.772253.

[11]

D. Dancer and P. Koch Medina, Abstract ecolution equations, Periodic problem and applications, Longman, Harlow, UK, 1992.

[12]

O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[13]

W. E. Fitzgibbon, M. Langlais, M. E. Parrott, G. F. Webb, A diffusive system with age dependency modeling FIV, Nonlinear Anal., 25 (1995), 975-989. doi: 10.1016/0362-546X(95)00092-A.

[14]

W. E. Fitzgibbon, C. B. Martin, J. J. Morgan, A diffusive epidemic model with criss–cross dynamics, J. Math. Anal. Appl., 184 (1994), 399-414. doi: 10.1006/jmaa.1994.1209.

[15]

W. E. Fitzgibbon, M. E. Parrott, G. F. Webb, Diffusion epidemic models with incubation and crisscross dynamics, Math. Biosci., 128 (1995), 131-155. doi: 10.1016/0025-5564(94)00070-G.

[16]

D. Gao and S. Ruan, Malaria models with spatial effects, John Wiley & Sons. (in press)

[17]

I. Gudelj, K. A. J. White, N. F. Britton, The effects of spatial movement and group interactions on disease dynamics of social animals, Bull. Math. Biol., 66 (2004), 91-108. doi: 10.1016/S0092-8240(03)00075-2.

[18]

Z. Guo, F.-B. Wang, X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non–local infections, J. Math. Biol., 65 (2012), 1387-1410. doi: 10.1007/s00285-011-0500-y.

[19]

P. Hess, Periodic–Parabolic Boundary Value Problems and Positivity, Longman Scientific and Technical, Harlow, UK, 1991.

[20]

H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. doi: 10.1137/S0036144500371907.

[21]

W. Huang, K. Cooke, C. Castillo-Chavez, Stability and bifurcation for a multiple–group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835-854. doi: 10.1137/0152047.

[22]

G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691. doi: 10.1016/j.aml.2013.01.010.

[23]

J. M. Hyman, J. Li, Differential susceptibility epidemic models, J. Math. Biol., 50 (2005), 626-644. doi: 10.1007/s00285-004-0301-7.

[24]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348. doi: 10.1007/s00285-011-0463-z.

[25]

Y. Jin, X.-Q. Zhao, Spatial dynamics of a nonlocal periodic reaction–diffusion model with stage structure, SIAM J. Math. Anal., 40 (2009), 2496-2516. doi: 10.1137/070709761.

[26]

T. Kato, Peturbation Theory for Linear Operators Springer-Verlag, Berlin, Heidelerg, 1976.

[27]

J. Li, X. Zou, Generalization of the Kermack–McKendrick SIR model to a patchy environment for a disease with latency, Math. Model. Nat. Phenom., 4 (2009), 92-118. doi: 10.1051/mmnp/20094205.

[28]

J. Li, X. Zou, Dynamics of an epidemic model with non–local infections for diseases with latency over a patchy environment, J. Math. Biol., 60 (2010), 645-686. doi: 10.1007/s00285-009-0280-9.

[29]

M. Li, Z. Shuai, C. Wang, Global stability of multi–group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47. doi: 10.1016/j.jmaa.2009.09.017.

[30]

X. Liang, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[31]

Y. Lou, X.-Q. Zhao, Threshold dynamics in a time–delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186. doi: 10.3934/dcdsb.2009.12.169.

[32]

Y. Lou, X.-Q. Zhao, A reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8.

[33]

Y. Lou, X.-Q. Zhao, A theoretical approach to understanding population dynamics with deasonal developmental durations, J Nonlinear Sci., 27 (2017), 573-603. doi: 10.1007/s00332-016-9344-3.

[34]

P. Magal, C. McCluskey, Two–group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095. doi: 10.1137/120882056.

[35]

P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[36]

M. Martcheva, An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics Springer, New York, 2015.

[37]

R. Martain, H. L. Smith, Abstract functional differential equations and reaction–diffusion system, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590.

[38]

C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59. doi: 10.1016/j.nonrwa.2008.10.014.

[39]

C. McCluskey, Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64-78. doi: 10.1016/j.nonrwa.2015.05.003.

[40]

J. D. Murray, Mathematical Biology Springer-Verlag, Berlin, 1989.

[41]

R. Peng, X.-Q. Zhao, A reaction–diffusion SIS epidemic model in a time–periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[42]

B. Perthame, Parabolic Equations in Biology Springer, Cham, 2015.

[43]

L. Rass and J. Radcliffe, Spatial Deterministic Epidemics Mathematical Surveys and Monographs, 102. American Mathematical Society, Providence, RI, 2003.

[44]

R. Ross, An application of the theory of probabilities to the study of a priori pathometry: Ⅰ, Proc. R. Soc. Lond., 92 (1916), 204-230. doi: 10.1098/rspa.1916.0007.

[45]

S. Ruan, Spatial−temporal dynamics in nonlocal epidemiological models, Mathematics for Life Science and Medicine, Springer−Verlag, Berlin, (2007), 99–122.

[46]

S. Ruan and J. Wu, Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts, Chapman & Hall/CRC, Boca Raton, FL, (2009), 293–316.

[47]

H. L. Smith, Monotone Dynamical System: An Introduction to the Theorey of Competitive and Cooperative Systems, Math. Surveys and Monogr. vol 41, American Mathematical Society, Providence, 1995.

[48]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286-2291. doi: 10.1016/j.camwa.2010.08.020.

[49]

Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947. doi: 10.1016/S0362-546X(99)00138-8.

[50]

H. R. Thieme, Mathematics in population biology, Princeton University Press, Princeton, NJ, 2003.

[51]

H. R. Thieme, Spectral bound and reproduction number for infinite–dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.

[52]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250 (2011), 3772-3801. doi: 10.1016/j.jde.2011.01.007.

[53]

P. van den Driessche, X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103. doi: 10.1016/j.mbs.2006.09.017.

[54]

B.-G. Wang, W.-T. Li, Z.-C. Wang, A reaction–diffusion SIS epidemic model in an almost periodic environment, Z. Angew. Math. Phys., 66 (2015), 3085-3108. doi: 10.1007/s00033-015-0585-z.

[55]

B.-G. Wang, X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dynam. Differential Equations, 25 (2013), 535-562. doi: 10.1007/s10884-013-9304-7.

[56]

L. Wang, Z. Liu, X. Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, Appl. Math. Comput., 284 (2016), 47-65. doi: 10.1016/j.amc.2016.02.058.

[57]

W. Wang, X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[58]

W. Wang, X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168. doi: 10.1137/090775890.

[59]

W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction–diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942.

[60]

W. Wang, X.-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170. doi: 10.1137/140981769.

[61]

J. Wu, Spatial structure: Partial differential equations models, Mathematical Epidemiology, Springer, Berlin, 1945 (2008), 191-203. doi: 10.1007/978-3-540-78911-6_8.

[62]

D. Xu, X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438. doi: 10.1016/j.jmaa.2005.02.062.

[63]

Z. Xu, X.-Q. Zhao, A vector–bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2615-2634. doi: 10.3934/dcdsb.2012.17.2615.

[64]

L. Zhang, J.-W. Sun, Global stability of a nonlocal epidemic model with delay, Taiwanese J. Math., 20 (2016), 577-587. doi: 10.11650/tjm.20.2016.6291.

[65]

L. Zhang and Z. -C. Wang, A time-periodic reaction-diffusion epidemic model with infection period Z. Angew. Math. Phys. 67 (2016), Art. 117, 14 pp.

[66]

L. Zhang, Z.-C. Wang, Y. Zhang, Dynamics of a reaction-diffusion waterborne pathogen model with direct and indirect transmission, Comput. Math. Appl., 72 (2016), 202-215. doi: 10.1016/j.camwa.2016.04.046.

[67]

L. Zhang, Z.-C. Wang, X.-Q. Zhao, Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period, J. Differential Equations, 258 (2015), 3011-3036. doi: 10.1016/j.jde.2014.12.032.

[68]

Y. Zhang, X.-Q. Zhao, A reaction–diffusion Lyme disease model with seasonality, SIAM J. Appl. Math., 73 (2013), 2077-2099. doi: 10.1137/120875454.

[69]

X. -Q. Zhao, Dynamical System in Population Biology Spring-Verlag, New York. 2003.

[70]

X.-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808. doi: 10.1007/s00285-011-0482-9.

[71]

X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyman. Differential Equations, 29 (2017), 67-82. doi: 10.1007/s10884-015-9425-2.

show all references

References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Seasonality and the dynamics of infectious disease, Ecol. Lett., 9 (2006), 467-484. doi: 10.1111/j.1461-0248.2005.00879.x.

[2]

R. M. Anderson, Discussion: the Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol., 53 (1991), 3-32. doi: 10.1007/BF02464422.

[3]

R. M. Anderson and R. May, Infectious Diseases of Humanns: Dynamics and Control, Oxford University Press, Oxford, 1991.

[4]

N. Bacaër, D. Ait, H. El, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol., 62 (2011), 741-762. doi: 10.1007/s00285-010-0354-8.

[5]

N. Bacaër, S. Guernaoui, The epidemic threshold of vector–borne disease with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[6]

E. Beretta, T. Hara, W. Ma, Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115. doi: 10.1016/S0362-546X(01)00528-4.

[7]

B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet, Stability of differential susceptibility and infectivity epidemic models, J. Math. Biol., 62 (2011), 39-64. doi: 10.1007/s00285-010-0327-y.

[8]

F. Brauer, Compartmental models in epidemiology, Mathematical Epidemiology, Springer, 56 (2008), 19-79. doi: 10.1007/978-3-540-78911-6_2.

[9]

L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach space, Arch. Math., 56 (1991), 49-57. doi: 10.1007/BF01190081.

[10]

L. Cai, M. Martcheva, X.-Z. Li, Competitive exclusion in a vector-host epidemic model with distributed delay, J. Biol. Dyn., 7 (2013), 47-67. doi: 10.1080/17513758.2013.772253.

[11]

D. Dancer and P. Koch Medina, Abstract ecolution equations, Periodic problem and applications, Longman, Harlow, UK, 1992.

[12]

O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[13]

W. E. Fitzgibbon, M. Langlais, M. E. Parrott, G. F. Webb, A diffusive system with age dependency modeling FIV, Nonlinear Anal., 25 (1995), 975-989. doi: 10.1016/0362-546X(95)00092-A.

[14]

W. E. Fitzgibbon, C. B. Martin, J. J. Morgan, A diffusive epidemic model with criss–cross dynamics, J. Math. Anal. Appl., 184 (1994), 399-414. doi: 10.1006/jmaa.1994.1209.

[15]

W. E. Fitzgibbon, M. E. Parrott, G. F. Webb, Diffusion epidemic models with incubation and crisscross dynamics, Math. Biosci., 128 (1995), 131-155. doi: 10.1016/0025-5564(94)00070-G.

[16]

D. Gao and S. Ruan, Malaria models with spatial effects, John Wiley & Sons. (in press)

[17]

I. Gudelj, K. A. J. White, N. F. Britton, The effects of spatial movement and group interactions on disease dynamics of social animals, Bull. Math. Biol., 66 (2004), 91-108. doi: 10.1016/S0092-8240(03)00075-2.

[18]

Z. Guo, F.-B. Wang, X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non–local infections, J. Math. Biol., 65 (2012), 1387-1410. doi: 10.1007/s00285-011-0500-y.

[19]

P. Hess, Periodic–Parabolic Boundary Value Problems and Positivity, Longman Scientific and Technical, Harlow, UK, 1991.

[20]

H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. doi: 10.1137/S0036144500371907.

[21]

W. Huang, K. Cooke, C. Castillo-Chavez, Stability and bifurcation for a multiple–group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835-854. doi: 10.1137/0152047.

[22]

G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691. doi: 10.1016/j.aml.2013.01.010.

[23]

J. M. Hyman, J. Li, Differential susceptibility epidemic models, J. Math. Biol., 50 (2005), 626-644. doi: 10.1007/s00285-004-0301-7.

[24]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348. doi: 10.1007/s00285-011-0463-z.

[25]

Y. Jin, X.-Q. Zhao, Spatial dynamics of a nonlocal periodic reaction–diffusion model with stage structure, SIAM J. Math. Anal., 40 (2009), 2496-2516. doi: 10.1137/070709761.

[26]

T. Kato, Peturbation Theory for Linear Operators Springer-Verlag, Berlin, Heidelerg, 1976.

[27]

J. Li, X. Zou, Generalization of the Kermack–McKendrick SIR model to a patchy environment for a disease with latency, Math. Model. Nat. Phenom., 4 (2009), 92-118. doi: 10.1051/mmnp/20094205.

[28]

J. Li, X. Zou, Dynamics of an epidemic model with non–local infections for diseases with latency over a patchy environment, J. Math. Biol., 60 (2010), 645-686. doi: 10.1007/s00285-009-0280-9.

[29]

M. Li, Z. Shuai, C. Wang, Global stability of multi–group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47. doi: 10.1016/j.jmaa.2009.09.017.

[30]

X. Liang, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[31]

Y. Lou, X.-Q. Zhao, Threshold dynamics in a time–delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186. doi: 10.3934/dcdsb.2009.12.169.

[32]

Y. Lou, X.-Q. Zhao, A reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8.

[33]

Y. Lou, X.-Q. Zhao, A theoretical approach to understanding population dynamics with deasonal developmental durations, J Nonlinear Sci., 27 (2017), 573-603. doi: 10.1007/s00332-016-9344-3.

[34]

P. Magal, C. McCluskey, Two–group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095. doi: 10.1137/120882056.

[35]

P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[36]

M. Martcheva, An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics Springer, New York, 2015.

[37]

R. Martain, H. L. Smith, Abstract functional differential equations and reaction–diffusion system, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590.

[38]

C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59. doi: 10.1016/j.nonrwa.2008.10.014.

[39]

C. McCluskey, Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64-78. doi: 10.1016/j.nonrwa.2015.05.003.

[40]

J. D. Murray, Mathematical Biology Springer-Verlag, Berlin, 1989.

[41]

R. Peng, X.-Q. Zhao, A reaction–diffusion SIS epidemic model in a time–periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[42]

B. Perthame, Parabolic Equations in Biology Springer, Cham, 2015.

[43]

L. Rass and J. Radcliffe, Spatial Deterministic Epidemics Mathematical Surveys and Monographs, 102. American Mathematical Society, Providence, RI, 2003.

[44]

R. Ross, An application of the theory of probabilities to the study of a priori pathometry: Ⅰ, Proc. R. Soc. Lond., 92 (1916), 204-230. doi: 10.1098/rspa.1916.0007.

[45]

S. Ruan, Spatial−temporal dynamics in nonlocal epidemiological models, Mathematics for Life Science and Medicine, Springer−Verlag, Berlin, (2007), 99–122.

[46]

S. Ruan and J. Wu, Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts, Chapman & Hall/CRC, Boca Raton, FL, (2009), 293–316.

[47]

H. L. Smith, Monotone Dynamical System: An Introduction to the Theorey of Competitive and Cooperative Systems, Math. Surveys and Monogr. vol 41, American Mathematical Society, Providence, 1995.

[48]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286-2291. doi: 10.1016/j.camwa.2010.08.020.

[49]

Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947. doi: 10.1016/S0362-546X(99)00138-8.

[50]

H. R. Thieme, Mathematics in population biology, Princeton University Press, Princeton, NJ, 2003.

[51]

H. R. Thieme, Spectral bound and reproduction number for infinite–dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.

[52]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250 (2011), 3772-3801. doi: 10.1016/j.jde.2011.01.007.

[53]

P. van den Driessche, X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103. doi: 10.1016/j.mbs.2006.09.017.

[54]

B.-G. Wang, W.-T. Li, Z.-C. Wang, A reaction–diffusion SIS epidemic model in an almost periodic environment, Z. Angew. Math. Phys., 66 (2015), 3085-3108. doi: 10.1007/s00033-015-0585-z.

[55]

B.-G. Wang, X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dynam. Differential Equations, 25 (2013), 535-562. doi: 10.1007/s10884-013-9304-7.

[56]

L. Wang, Z. Liu, X. Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, Appl. Math. Comput., 284 (2016), 47-65. doi: 10.1016/j.amc.2016.02.058.

[57]

W. Wang, X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[58]

W. Wang, X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168. doi: 10.1137/090775890.

[59]

W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction–diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942.

[60]

W. Wang, X.-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170. doi: 10.1137/140981769.

[61]

J. Wu, Spatial structure: Partial differential equations models, Mathematical Epidemiology, Springer, Berlin, 1945 (2008), 191-203. doi: 10.1007/978-3-540-78911-6_8.

[62]

D. Xu, X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438. doi: 10.1016/j.jmaa.2005.02.062.

[63]

Z. Xu, X.-Q. Zhao, A vector–bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2615-2634. doi: 10.3934/dcdsb.2012.17.2615.

[64]

L. Zhang, J.-W. Sun, Global stability of a nonlocal epidemic model with delay, Taiwanese J. Math., 20 (2016), 577-587. doi: 10.11650/tjm.20.2016.6291.

[65]

L. Zhang and Z. -C. Wang, A time-periodic reaction-diffusion epidemic model with infection period Z. Angew. Math. Phys. 67 (2016), Art. 117, 14 pp.

[66]

L. Zhang, Z.-C. Wang, Y. Zhang, Dynamics of a reaction-diffusion waterborne pathogen model with direct and indirect transmission, Comput. Math. Appl., 72 (2016), 202-215. doi: 10.1016/j.camwa.2016.04.046.

[67]

L. Zhang, Z.-C. Wang, X.-Q. Zhao, Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period, J. Differential Equations, 258 (2015), 3011-3036. doi: 10.1016/j.jde.2014.12.032.

[68]

Y. Zhang, X.-Q. Zhao, A reaction–diffusion Lyme disease model with seasonality, SIAM J. Appl. Math., 73 (2013), 2077-2099. doi: 10.1137/120875454.

[69]

X. -Q. Zhao, Dynamical System in Population Biology Spring-Verlag, New York. 2003.

[70]

X.-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808. doi: 10.1007/s00285-011-0482-9.

[71]

X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyman. Differential Equations, 29 (2017), 67-82. doi: 10.1007/s10884-015-9425-2.

[1]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[2]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[3]

Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064

[4]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[5]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[6]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[7]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[8]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[9]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[10]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[11]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[12]

Kai Wang, Zhidong Teng, Xueliang Zhang. Dynamical behaviors of an Echinococcosis epidemic model with distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (5-6) : 1425-1445. doi: 10.3934/mbe.2017074

[13]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[14]

Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127

[15]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[16]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[17]

Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277

[18]

Bin Fang, Xue-Zhi Li, Maia Martcheva, Li-Ming Cai. Global stability for a heroin model with two distributed delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 715-733. doi: 10.3934/dcdsb.2014.19.715

[19]

Hongying Shu, Xiang-Sheng Wang. Global dynamics of a coupled epidemic model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1575-1585. doi: 10.3934/dcdsb.2017076

[20]

F. Berezovskaya, G. Karev, Baojun Song, Carlos Castillo-Chavez. A Simple Epidemic Model with Surprising Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 133-152. doi: 10.3934/mbe.2005.2.133

2016 Impact Factor: 1.035

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]