# American Institute of Mathematical Sciences

October 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071

## A mathematical model of stem cell regeneration with epigenetic state transitions

 Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China

* Corresponding author: Jinzhi Lei

Received  May 18, 2016 Accepted  January 15, 2017 Published  May 2017

Fund Project: This work is supported by National Natural Science Foundation of China (91430101 and 11272169)

In this paper, we study a mathematical model of stem cell regeneration with epigenetic state transitions. In the model, the heterogeneity of stem cells is considered through the epigenetic state of each cell, and each epigenetic state defines a subpopulation of stem cells. The dynamics of the subpopulations are modeled by a set of ordinary differential equations in which epigenetic state transition in cell division is given by the transition probability. We present analysis for the existence and linear stability of the equilibrium state. As an example, we apply the model to study the dynamics of state transition in breast cancer stem cells.

Citation: Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071
##### References:

show all references

##### References:
Model illustration. During stem cell regeneration, cells in the resting phase either enter the proliferating phase with a rate $\beta$, or be removed from the resting pool with a rate $\gamma$. The proliferating cells undergo apoptosis with a probability $\mu$. Each daughter cell generated from mitosis is either a differentiated cell (with a probability $\kappa$) or a stem cell (with a probability $(1-\kappa)$)
Transition dynamics. (A) The cell population dynamics. (B) The percentage of epigenetic-state cells at the equilibrium state. Here, results of $\nu = 0$ (green), $20$ (blue), and $200$ (red) are shown. In simulations, the initial cell population is taken as $N(0) = 300$, and $N(0, X_i)=1, (i=1, \cdots, 300)$
Simulation of cell-state dynamics. Dynamics of cell-state proportion with different initial states (left: $(S, B, L)=(99.9, 0.05, 0.05)$, middle: $(S, B, L)=(0.05, 0.05, 99.9)$, right: $(S, B, L)=(0.05, 99.9, 0.05)$). Markers are data taken from [13]. Parameters are listed in Table 1
Parameter values in the model of cancer cell state transition. Left: the probabilities $\gamma, \kappa, \mu$ for cells of these three states. Right: the transition matrix $p(X, Y), X, Y\in \Omega$
 Parameter S B L S B L $\gamma$ 0.95 0.7 0.65 S 0.58 0.04 0.01 $\kappa$ 0.02 0.03 0 B 0.07 0.47 0 $\mu$ 0.1 0.1 0.1 L 0.35 0.49 0.09
 Parameter S B L S B L $\gamma$ 0.95 0.7 0.65 S 0.58 0.04 0.01 $\kappa$ 0.02 0.03 0 B 0.07 0.47 0 $\mu$ 0.1 0.1 0.1 L 0.35 0.49 0.09
 [1] Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32 [2] Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19 [3] Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765 [4] Janet Dyson, Rosanna Villella-Bressan, G.F. Webb. The steady state of a maturity structured tumor cord cell population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 115-134. doi: 10.3934/dcdsb.2004.4.115 [5] Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048 [6] Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67 [7] Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1 [8] Oleg U. Kirnasovsky, Yuri Kogan, Zvia Agur. Resilience in stem cell renewal: development of the Agur--Daniel--Ginosar model. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 129-148. doi: 10.3934/dcdsb.2008.10.129 [9] Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541 [10] Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367 [11] Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451 [12] Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268 [13] Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331 [14] Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167 [15] Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205 [16] Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363 [17] Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 613-627. doi: 10.3934/dcdsb.2009.11.613 [18] A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250 [19] Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189 [20] Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

2017 Impact Factor: 1.23