October 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069

Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

2. 

School of Mathematics and Computer Science, Guizhou Education University, Guiyang 550018, China

* Corresponding authorr: Shanjing Ren

Received  June 04, 2016 Revised  December 30, 2016 Published  May 2017

Fund Project: This research was supported by the National Natural Science Foundation of China(N0.11371161), the Special Fund of Provincial Governor for Excellent Scientific Technology and Educational Talents(Grand No.QKJB[2012]19)

In this paper, an $SEIR$ epidemic model for an imperfect treatment disease with age-dependent latency and relapse is proposed. The model is well-suited to model tuberculosis. The basic reproduction number $R_{0}$ is calculated. We obtain the global behavior of the model in terms of $R_{0}$. If $R_{0} < 1$, the disease-free equilibrium is globally asymptotically stable, whereas if $R_{0}>1$, a Lyapunov functional is used to show that the endemic equilibrium is globally stable amongst solutions for which the disease is present.

Citation: Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069
References:
[1]

R. A. Adams and J. J. Fournier, Sobolev Spaces, Academic Press, New York, 2003.

[2]

F. BrauerZ. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Mathematical Biosciences and Engineering, 10 (2013), 1335-1349. doi: 10.3934/mbe.2013.10.1335.

[3]

Y. ChenJ. Yang and F. Zhang, The global stability of an SIRS model with infection age, Mathematical Biosciences and Engineering, 11 (2014), 449-469. doi: 10.3934/mbe.2014.11.449.

[4]

P. van den DriesscheL. Wang and X. Zou, Modeling diseases with latency and relapse, Mathematical Biosciences and Engineering, 4 (2007), 205-219. doi: 10.3934/mbe.2007.4.205.

[5]

P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Mathematical Biosciences, 207 (2007), 89-103. doi: 10.1016/j.mbs.2006.09.017.

[6]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections, Siam Journal on Applied Mathematics, 73 (2013), 572-593. doi: 10.1137/120890351.

[7]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Mathematical Biology, 28 (1990), 365-382. doi: 10.1007/BF00178324.

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988. doi: 10.1090/surv/025.

[9]

J. K. Hale, Functional Differential Equations, Springer, New York, 1971. doi: 10.1007/BFb0060406.

[10]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, Siam Journal on Mathematical Analysis, 20 (1989), 388-395. doi: 10.1137/0520025.

[11]

F. Hoppensteadt, Mathematical Theories of Populations: Deomgraphics, Genetics, and Epidemics, SIAM, Philadelphia, 1975. doi: 10.1137/1.9781611970487.

[12]

M. Iannelli, Mathematical theory of age-structured population dynamics, Applied Mathematics Monagraphs CNR, 7 (1994).

[13]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London Ser. A, 115 (1927), 700-721.

[14]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics Ⅱ. The problem of endemicity, Proc.R. Soc.London Ser. A, 138 (1932), 55-83.

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics Ⅲ. Further studies of the problem of endemicity, Proc.R. Soc.London Ser. A, 141 (1933), 94-122.

[16]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemilogy, Mathematical Biosciences, 125 (1995), 155-164. doi: 10.1016/0025-5564(95)92756-5.

[17]

L. LiuJ. Wang and X. Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, Nonlinear Analysis, 24 (2015), 18-35. doi: 10.1016/j.nonrwa.2015.01.001.

[18]

P. MagalC. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140. doi: 10.1080/00036810903208122.

[19]

P. Magal, Compact attractors for time-periodic age-structured population models, Electronic Journal of Differential Equations, 65 (2001), 229-262.

[20]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Mathematical Biosciences and Engineering, 9 (2012), 819-841. doi: 10.3934/mbe.2012.9.819.

[21]

A. G. McKendrick, Application of mathematics to medical problems, Proceedings of the Edinburgh Mathematical Society, 44 (1925), 98-130. doi: 10.1017/S0013091500034428.

[22]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011. doi: 10.1090/gsm/118.

[23]

C. Vargas-De-León, On the Global Stability of Infectious Diseases Models with Relapse, Abstr. Appl, 9 (2013), 50-61.

[24]

J. WangR. Zhang and T. Kuniya, A note on dynamics of an age-of-infection cholera model, Mathematical Biosciences and Engineering, 13 (2016), 227-247. doi: 10.3934/mbe.2016.13.227.

[25]

J. WangR. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, Mathematical Analysis and Applications, 432 (2015), 289-313. doi: 10.1016/j.jmaa.2015.06.040.

[26]

J. WangR. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, Applied Mathematics, 81 (2016), 321-343. doi: 10.1093/imamat/hxv039.

[27]

J. WangR. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, Biological Dynamics, 9 (2015), 73-101. doi: 10.1080/17513758.2015.1006696.

[28]

L. WangZ. Liu and X. Zhang, Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination, Nonlinear Analysis: Real World Applications, 32 (2016), 136-158. doi: 10.1016/j.nonrwa.2016.04.009.

[29]

J. WangS. S. Gao and X. Z. Li, A TB model with infectivity in latent period and imperfect treatment, Discrete Dynamics in Nature and Society, 2012 (2012), 267-278. doi: 10.1155/2012/184918.

[30]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.

[31]

Y. YangS. Ruan and D. Xiao, Global stability of age-structured virus dynamics model with Beddinaton-Deangelis infection function, Mathematical Biosciences and Engineering, 12 (2015), 859-877. doi: 10.3934/mbe.2015.12.859.

[32]

J. H. Zhang, Qualitative Analysis and Data Simulation of Tuberculosis Transmission Models, Ph. D thesis, Central China Normal University in Wuhan, 2014.

[33]

Centers for Disease Control and Prevention, Vaccines and Immunizations-Measles Epidemiology and Prevention of Vaccine-Preventable Diseases Available from: http://www.cdc.gov/vaccines/pubs/pinkbook/meas.html.

show all references

References:
[1]

R. A. Adams and J. J. Fournier, Sobolev Spaces, Academic Press, New York, 2003.

[2]

F. BrauerZ. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Mathematical Biosciences and Engineering, 10 (2013), 1335-1349. doi: 10.3934/mbe.2013.10.1335.

[3]

Y. ChenJ. Yang and F. Zhang, The global stability of an SIRS model with infection age, Mathematical Biosciences and Engineering, 11 (2014), 449-469. doi: 10.3934/mbe.2014.11.449.

[4]

P. van den DriesscheL. Wang and X. Zou, Modeling diseases with latency and relapse, Mathematical Biosciences and Engineering, 4 (2007), 205-219. doi: 10.3934/mbe.2007.4.205.

[5]

P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Mathematical Biosciences, 207 (2007), 89-103. doi: 10.1016/j.mbs.2006.09.017.

[6]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections, Siam Journal on Applied Mathematics, 73 (2013), 572-593. doi: 10.1137/120890351.

[7]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Mathematical Biology, 28 (1990), 365-382. doi: 10.1007/BF00178324.

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988. doi: 10.1090/surv/025.

[9]

J. K. Hale, Functional Differential Equations, Springer, New York, 1971. doi: 10.1007/BFb0060406.

[10]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, Siam Journal on Mathematical Analysis, 20 (1989), 388-395. doi: 10.1137/0520025.

[11]

F. Hoppensteadt, Mathematical Theories of Populations: Deomgraphics, Genetics, and Epidemics, SIAM, Philadelphia, 1975. doi: 10.1137/1.9781611970487.

[12]

M. Iannelli, Mathematical theory of age-structured population dynamics, Applied Mathematics Monagraphs CNR, 7 (1994).

[13]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London Ser. A, 115 (1927), 700-721.

[14]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics Ⅱ. The problem of endemicity, Proc.R. Soc.London Ser. A, 138 (1932), 55-83.

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics Ⅲ. Further studies of the problem of endemicity, Proc.R. Soc.London Ser. A, 141 (1933), 94-122.

[16]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemilogy, Mathematical Biosciences, 125 (1995), 155-164. doi: 10.1016/0025-5564(95)92756-5.

[17]

L. LiuJ. Wang and X. Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, Nonlinear Analysis, 24 (2015), 18-35. doi: 10.1016/j.nonrwa.2015.01.001.

[18]

P. MagalC. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140. doi: 10.1080/00036810903208122.

[19]

P. Magal, Compact attractors for time-periodic age-structured population models, Electronic Journal of Differential Equations, 65 (2001), 229-262.

[20]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Mathematical Biosciences and Engineering, 9 (2012), 819-841. doi: 10.3934/mbe.2012.9.819.

[21]

A. G. McKendrick, Application of mathematics to medical problems, Proceedings of the Edinburgh Mathematical Society, 44 (1925), 98-130. doi: 10.1017/S0013091500034428.

[22]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011. doi: 10.1090/gsm/118.

[23]

C. Vargas-De-León, On the Global Stability of Infectious Diseases Models with Relapse, Abstr. Appl, 9 (2013), 50-61.

[24]

J. WangR. Zhang and T. Kuniya, A note on dynamics of an age-of-infection cholera model, Mathematical Biosciences and Engineering, 13 (2016), 227-247. doi: 10.3934/mbe.2016.13.227.

[25]

J. WangR. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, Mathematical Analysis and Applications, 432 (2015), 289-313. doi: 10.1016/j.jmaa.2015.06.040.

[26]

J. WangR. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, Applied Mathematics, 81 (2016), 321-343. doi: 10.1093/imamat/hxv039.

[27]

J. WangR. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, Biological Dynamics, 9 (2015), 73-101. doi: 10.1080/17513758.2015.1006696.

[28]

L. WangZ. Liu and X. Zhang, Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination, Nonlinear Analysis: Real World Applications, 32 (2016), 136-158. doi: 10.1016/j.nonrwa.2016.04.009.

[29]

J. WangS. S. Gao and X. Z. Li, A TB model with infectivity in latent period and imperfect treatment, Discrete Dynamics in Nature and Society, 2012 (2012), 267-278. doi: 10.1155/2012/184918.

[30]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.

[31]

Y. YangS. Ruan and D. Xiao, Global stability of age-structured virus dynamics model with Beddinaton-Deangelis infection function, Mathematical Biosciences and Engineering, 12 (2015), 859-877. doi: 10.3934/mbe.2015.12.859.

[32]

J. H. Zhang, Qualitative Analysis and Data Simulation of Tuberculosis Transmission Models, Ph. D thesis, Central China Normal University in Wuhan, 2014.

[33]

Centers for Disease Control and Prevention, Vaccines and Immunizations-Measles Epidemiology and Prevention of Vaccine-Preventable Diseases Available from: http://www.cdc.gov/vaccines/pubs/pinkbook/meas.html.

Figure 1.  Here is the Model of TB
Figure 2.  The time series of $S(t)$ and $I(t)$, and the age distributions of $e(t, a)$ and $r(t, c)$ when $\tau=12$
Figure 3.  he time series of $S(t)$ and $I(t)$, and the age distributions of $e(t, a)$ and $r(t, c)$ when $\tau=1$
[1]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[2]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[3]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[4]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[5]

Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23

[6]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[7]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[8]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[9]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[10]

Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186

[11]

Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409

[12]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[13]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[14]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[15]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[16]

Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018207

[17]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[18]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[19]

Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 535-560. doi: 10.3934/mbe.2005.2.535

[20]

Fabrizio Clarelli, Roberto Natalini. A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences & Engineering, 2010, 7 (2) : 277-300. doi: 10.3934/mbe.2010.7.277

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (21)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]