2017, 11: 369-407. doi: 10.3934/jmd.2017015

Escape of mass in homogeneous dynamics in positive characteristic

1. 

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

2. 

Laboratoire de mathématiques déOrsay, UMR 8628 Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France

3. 

Mathematics Department, Technion, Israel Institute of Technology, Haifa, 32000 Israel

Received  December 20, 2015 Revised  December 5, 2016 Published  May 2017

We show that in positive characteristic the homogeneous probability measure supported on a periodic orbit of the diagonal group in the space of $2$-lattices, when varied along rays of Hecke trees, may behave in sharp contrast to the zero characteristic analogue: For a large set of rays, the measures fail to converge to the uniform probability measure on the space of $2$-lattices. More precisely, we prove that when the ray is rational there is uniform escape of mass, that there are uncountably many rays giving rise to escape of mass, and that there are rays along which the measures accumulate on measures which are not absolutely continuous with respect to the uniform measure on the space of $2$-lattices.

Citation: Alexander Kemarsky, Frédéric Paulin, Uri Shapira. Escape of mass in homogeneous dynamics in positive characteristic. Journal of Modern Dynamics, 2017, 11: 369-407. doi: 10.3934/jmd.2017015
References:
[1]

M. Aka and U. Shapira, On the evolution of continued fraction expansions in a fixed quadratic field, preprint, arXiv: 1201.1280, to appear in Journal d'Analyse Mathématique.

[2]

J. AthreyaA. Ghosh and A. Prasad, Ultrametric logarithm laws, Ⅱ, Monatsh. Math., 167 (2012), 333-356.

[3]

Y. Benoist and H. Oh, Equidistribution of rational matrices in their conjugacy classes, Geom. Funct. Anal., 17 (2007), 1-32.

[4]

Y. Benoist and J.-F. Quint, Random walks on finite volume homogeneous spaces, Invent. Math., 187 (2012), 37-59.

[5]

E. Breuillard, Equidistribution des orbites toriques sur les espaces homogènes (d'aprés M. Einsiedler, E. Lindenstrauss, Ph. Michel, A. Venkatesh), Séminaire Bourbaki, Exp. 1008, Astérisque, 332 (2010), 305–339.

[6]

A. Broise-Alamichel and F. Paulin, Dynamique sur le rayon modulaire et fractions continues en caractéristique p, J. London Math. Soc., 76 (2007), 399-418.

[7]

L. ClozelH. Oh and E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent. Math., 144 (2001), 327-351.

[8]

L. Clozel and E. Ullmo, Equidistribution des points de Hecke, in Contribution to Automorphic Forms, Geometry and Number Theory (eds. H. Hida, D. Ramakrishnan and F. Shahidi), Johns Hopkins Univ. Press, 2004,193-254.

[9]

S. G. Dani and G. Margulis, Limit distribution of orbits of unipotent flows and values of quadratic forms, Adv. Soviet Math., 16 (1993), 91-137.

[10]

B. de Mathan and O. Teulié, Problèmes diophantiens simultanés, Monatsh. Math., 143 (2004), 229-245.

[11]

A. Eskin and G. Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, in Random Walks and Geometry, Walter de Gruiter, Berlin, 2004,431-444.

[12]

A. Eskin and M. Mirzakani, Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71-105.

[13]

A. Eskin and H. Oh, Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dynam. Systems, 26 (2006), 163-167.

[14]

H. Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z., 33 (1931), 692-713.

[15]

U. Hamenstädt, Dynamics of the Teichmüller flow on compact invariant sets, J. Mod. Dynamics, 4 (2010), 393-418.

[16]

A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math., 130 (2000), 211-229.

[17]

A. Lubotzky, Lattices in rank one Lie groups over local fields, Geom. Funct. Anal., 1 (1991), 406-431.

[18]

H. Nagao, On GL(2, K [x]), J. Inst. Polytech. Osaka City Univ. Ser. A, 10 (1959), 117-121.

[19]

F. Paulin, Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p, Geom. Dedicata., 95 (2002), 65-85.

[20]

F. Paulin and U. Shapira, High degree continued fraction expansions of quadratic irrationals in positive characteristic, in preparation.

[21]

G. Prasad and A. Rapinchuk, Subnormal subgroups of the groups of rational points of reductive algebraic groups, Proc. Amer. Math. Soc., 130 (2002), 2219-2227.

[22]

I. Reiner, Maximal Orders, London Mathematical Society Monographs, No. 5, Academic Press, London-New York, 1975.

[23]

M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, SpringerVerlag, New York, 2002.

[24]

P. Sarnak, Reciprocal geodesics, Clay Math. Proc., 7 (2007), 217-237.

[25]

W. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arith., 95 (2000), 139-166.

[26]

J. -P. Serre, Local Fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979.

[27]

J. -P. Serre, Arbres, amalgames, SL2, 3ème éd. corr. , Astérisque, 46, Soc. Math. France, Paris, 1977.

[28]

U. Shapira, Full escape of mass for the diagonal group, preprint, arXiv: 1511.07251, to appear in International Mathematics Research Notices.

[29]

J. Tits, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Boulder, 1965), Proc. Symp. Pure Math. Ⅸ, Amer. Math. Soc. , 1966, 33-62.

[30]

J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations and LFunctions (Corvallis, 1977), Part 1, Proc. Symp. Pure Math. ⅩⅩⅩⅢ, Amer. Math. Soc. , 1979, 29-69.

[31]

A. Weil, On the analogue of the modular group in characteristic p, in Functional Analysis and Related Fields (Chicago, 1968), Springer, 1970,211-223.

[32] D. Witte Morris, Ratneros Theorems on Unipotent Flows, Chicago Univ. Press, Chicago, IL, 2005.

show all references

References:
[1]

M. Aka and U. Shapira, On the evolution of continued fraction expansions in a fixed quadratic field, preprint, arXiv: 1201.1280, to appear in Journal d'Analyse Mathématique.

[2]

J. AthreyaA. Ghosh and A. Prasad, Ultrametric logarithm laws, Ⅱ, Monatsh. Math., 167 (2012), 333-356.

[3]

Y. Benoist and H. Oh, Equidistribution of rational matrices in their conjugacy classes, Geom. Funct. Anal., 17 (2007), 1-32.

[4]

Y. Benoist and J.-F. Quint, Random walks on finite volume homogeneous spaces, Invent. Math., 187 (2012), 37-59.

[5]

E. Breuillard, Equidistribution des orbites toriques sur les espaces homogènes (d'aprés M. Einsiedler, E. Lindenstrauss, Ph. Michel, A. Venkatesh), Séminaire Bourbaki, Exp. 1008, Astérisque, 332 (2010), 305–339.

[6]

A. Broise-Alamichel and F. Paulin, Dynamique sur le rayon modulaire et fractions continues en caractéristique p, J. London Math. Soc., 76 (2007), 399-418.

[7]

L. ClozelH. Oh and E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent. Math., 144 (2001), 327-351.

[8]

L. Clozel and E. Ullmo, Equidistribution des points de Hecke, in Contribution to Automorphic Forms, Geometry and Number Theory (eds. H. Hida, D. Ramakrishnan and F. Shahidi), Johns Hopkins Univ. Press, 2004,193-254.

[9]

S. G. Dani and G. Margulis, Limit distribution of orbits of unipotent flows and values of quadratic forms, Adv. Soviet Math., 16 (1993), 91-137.

[10]

B. de Mathan and O. Teulié, Problèmes diophantiens simultanés, Monatsh. Math., 143 (2004), 229-245.

[11]

A. Eskin and G. Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, in Random Walks and Geometry, Walter de Gruiter, Berlin, 2004,431-444.

[12]

A. Eskin and M. Mirzakani, Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71-105.

[13]

A. Eskin and H. Oh, Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dynam. Systems, 26 (2006), 163-167.

[14]

H. Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z., 33 (1931), 692-713.

[15]

U. Hamenstädt, Dynamics of the Teichmüller flow on compact invariant sets, J. Mod. Dynamics, 4 (2010), 393-418.

[16]

A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math., 130 (2000), 211-229.

[17]

A. Lubotzky, Lattices in rank one Lie groups over local fields, Geom. Funct. Anal., 1 (1991), 406-431.

[18]

H. Nagao, On GL(2, K [x]), J. Inst. Polytech. Osaka City Univ. Ser. A, 10 (1959), 117-121.

[19]

F. Paulin, Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p, Geom. Dedicata., 95 (2002), 65-85.

[20]

F. Paulin and U. Shapira, High degree continued fraction expansions of quadratic irrationals in positive characteristic, in preparation.

[21]

G. Prasad and A. Rapinchuk, Subnormal subgroups of the groups of rational points of reductive algebraic groups, Proc. Amer. Math. Soc., 130 (2002), 2219-2227.

[22]

I. Reiner, Maximal Orders, London Mathematical Society Monographs, No. 5, Academic Press, London-New York, 1975.

[23]

M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, SpringerVerlag, New York, 2002.

[24]

P. Sarnak, Reciprocal geodesics, Clay Math. Proc., 7 (2007), 217-237.

[25]

W. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arith., 95 (2000), 139-166.

[26]

J. -P. Serre, Local Fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979.

[27]

J. -P. Serre, Arbres, amalgames, SL2, 3ème éd. corr. , Astérisque, 46, Soc. Math. France, Paris, 1977.

[28]

U. Shapira, Full escape of mass for the diagonal group, preprint, arXiv: 1511.07251, to appear in International Mathematics Research Notices.

[29]

J. Tits, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Boulder, 1965), Proc. Symp. Pure Math. Ⅸ, Amer. Math. Soc. , 1966, 33-62.

[30]

J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations and LFunctions (Corvallis, 1977), Part 1, Proc. Symp. Pure Math. ⅩⅩⅩⅢ, Amer. Math. Soc. , 1979, 29-69.

[31]

A. Weil, On the analogue of the modular group in characteristic p, in Functional Analysis and Related Fields (Chicago, 1968), Springer, 1970,211-223.

[32] D. Witte Morris, Ratneros Theorems on Unipotent Flows, Chicago Univ. Press, Chicago, IL, 2005.
Figure 1.  The modular ray ${\rm {PGL}}_2(k_\infty[Y])\backslash\!\backslash{\mathbb{T}}_\infty$
Figure 2.  Back and forth paths in cuspidal rays
Figure 3.  A partition of the Hecke sphere $S_\nu(n)$
Figure 4.  Rational Bruhat-Tits rays
Figure 5.  Sector-spheres in Hecke trees
Figure 6.  Iterated construction of nested sectors
[1]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[2]

Rostyslav Kravchenko. The action of finite-state tree automorphisms on Bernoulli measures. Journal of Modern Dynamics, 2010, 4 (3) : 443-451. doi: 10.3934/jmd.2010.4.443

[3]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[4]

Amir Mohammadi. Measures invariant under horospherical subgroups in positive characteristic. Journal of Modern Dynamics, 2011, 5 (2) : 237-254. doi: 10.3934/jmd.2011.5.237

[5]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[6]

Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405

[7]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[8]

Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1

[9]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[10]

Jean-Baptiste Bardet, Bastien Fernandez. Extensive escape rate in lattices of weakly coupled expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 669-684. doi: 10.3934/dcds.2011.31.669

[11]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[12]

Reuven Cohen, Mira Gonen, Avishai Wool. Bounding the bias of tree-like sampling in IP topologies. Networks & Heterogeneous Media, 2008, 3 (2) : 323-332. doi: 10.3934/nhm.2008.3.323

[13]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

[14]

Wael Bahsoun, Christopher Bose. Quasi-invariant measures, escape rates and the effect of the hole. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1107-1121. doi: 10.3934/dcds.2010.27.1107

[15]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[16]

Maria Cameron. Computing the asymptotic spectrum for networks representing energy landscapes using the minimum spanning tree. Networks & Heterogeneous Media, 2014, 9 (3) : 383-416. doi: 10.3934/nhm.2014.9.383

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Yong-Fu Yang. Mechanism of the formation of singularities for diagonal systems with linearly degenerate characteristic fields. Communications on Pure & Applied Analysis, 2009, 8 (2) : 757-768. doi: 10.3934/cpaa.2009.8.757

[19]

Xiaolu Hou, Frédérique Oggier. Modular lattices from a variation of construction a over number fields. Advances in Mathematics of Communications, 2017, 11 (4) : 719-745. doi: 10.3934/amc.2017053

[20]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (3)
  • HTML views (44)
  • Cited by (0)

[Back to Top]