2017, 11: 125-142. doi: 10.3934/jmd.2017006

Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups

Imperial College London, South Kensington Campus, 180 Queen’s Gate, Huxley Building, London SW7 2AZ, UK

Received  November 17, 2014 Revised  June 19, 2016 Published  January 2017

We study close-to-constants quasiperiodic cocycles in $\mathbb{T} ^{d} \times G$, where $d \in \mathbb{N} ^{*} $ and $G$ is a compact Lie group, under the assumption that the rotation in the basis satisfies a Diophantine condition. We prove differentiable rigidity for such cocycles: if such a cocycle is measurably conjugate to a constant one satisfying a Diophantine condition with respect to the rotation, then it is $C^{\infty}$-conjugate to it, and the KAM scheme actually produces a conjugation. We also derive a global differentiable rigidity theorem, assuming the convergence of the renormalization scheme for such dynamical systems.

Citation: Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006
References:
[1]

A. Avila, R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2), 164 (2006), 911-940.

[2]

A. Avila, B. Fayad, R. Krikorian, A KAM scheme for SL(2.$\mathbb{R} $) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.

[3]

D. Bump, Lie Groups, Graduate Texts in Mathematics, 225, Springer-Verlag, New York, 2004.

[4]

J. Dieudonné, Eléments d'Analyse, 5, Gauthier-Villars, 1975.

[5]

J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer-Verlag, Berlin, 2000.

[6]

L. H. Eliasson, Ergodic skew-systems on Td × SO(3.R), Ergodic Theory Dynam. Systems, 22 (2002), 1429-1449.

[7]

B. Fayad, R. Krikorian, Rigidity results for quasiperiodic SL(2.$\mathbb{R} $)-cocycles, J. Mod. Dyn., 3 (2009), 497-510.

[8]

H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math., 83 (1961), 573-601.

[9]

S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, (1962).

[10]

X. Hou, J. You, Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n), Discrete Contin. Dyn. Syst., 24 (2009), 441-454.

[11]

N. Karaliolios, Invariant distributions for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1407.4763, 2014.

[12]

N. Karaliolios, Continuous spectrum or measurable reducibility for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1512.00057, 2015.

[13]

N. Karaliolios, Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups, Mém. Soc. Math. Fr. (N.S.), No. 146 (2016), 4+ⅱ+200 pp.

[14]

A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, 1949 (1949), 19 pp..

[15]

R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, (1999), vi+216 pp.

[16]

R. Krikorian, Global density of reducible quasi-periodic cocycles on T1 × SU(2), Ann. of Math. (2), 154 (2001), 269-326.

show all references

References:
[1]

A. Avila, R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2), 164 (2006), 911-940.

[2]

A. Avila, B. Fayad, R. Krikorian, A KAM scheme for SL(2.$\mathbb{R} $) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.

[3]

D. Bump, Lie Groups, Graduate Texts in Mathematics, 225, Springer-Verlag, New York, 2004.

[4]

J. Dieudonné, Eléments d'Analyse, 5, Gauthier-Villars, 1975.

[5]

J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer-Verlag, Berlin, 2000.

[6]

L. H. Eliasson, Ergodic skew-systems on Td × SO(3.R), Ergodic Theory Dynam. Systems, 22 (2002), 1429-1449.

[7]

B. Fayad, R. Krikorian, Rigidity results for quasiperiodic SL(2.$\mathbb{R} $)-cocycles, J. Mod. Dyn., 3 (2009), 497-510.

[8]

H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math., 83 (1961), 573-601.

[9]

S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, (1962).

[10]

X. Hou, J. You, Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n), Discrete Contin. Dyn. Syst., 24 (2009), 441-454.

[11]

N. Karaliolios, Invariant distributions for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1407.4763, 2014.

[12]

N. Karaliolios, Continuous spectrum or measurable reducibility for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1512.00057, 2015.

[13]

N. Karaliolios, Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups, Mém. Soc. Math. Fr. (N.S.), No. 146 (2016), 4+ⅱ+200 pp.

[14]

A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, 1949 (1949), 19 pp..

[15]

R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, (1999), vi+216 pp.

[16]

R. Krikorian, Global density of reducible quasi-periodic cocycles on T1 × SU(2), Ann. of Math. (2), 154 (2001), 269-326.

[1]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[2]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

[3]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[4]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[5]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 75-88. doi: 10.3934/dcds.2004.10.75

[6]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[7]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[8]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[9]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[10]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[11]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[12]

A. Kononenko. Twisted cocycles and rigidity problems. Electronic Research Announcements, 1995, 1: 26-34.

[13]

Felipe A. Ramírez. Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups. Journal of Modern Dynamics, 2009, 3 (3) : 335-357. doi: 10.3934/jmd.2009.3.335

[14]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[15]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[16]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[17]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[18]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[19]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[20]

Danijela Damjanović. Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. Journal of Modern Dynamics, 2007, 1 (4) : 665-688. doi: 10.3934/jmd.2007.1.665

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (3)
  • HTML views (19)
  • Cited by (1)

Other articles
by authors

[Back to Top]