August 2017, 11: 99-123. doi: 10.3934/jmd.2017005

On spectra of Koopman, groupoid and quasi-regular representations

1. 

Department of Mathematics, University of Toronto, Room 6290, 40 St. George Street, Toronto, ON M5S 2E4, Canada

2. 

Department of Mathematics, MS 3368, Texas A&M University, College Station, TX 77843-3368, USA

Received  May 31, 2016 Revised  November 05, 2016 Published  January 2017

Fund Project: Both authors were supported by the Swiss National Science Foundation.
RG:Supported by NSF grant DMS-1207699 and NSA grant H98230-15-1-0328

In this paper we investigate relations between Koopman, groupoid and quasi-regular representations of countable groups. We show that for an ergodic measure class preserving action of a countable group G on a standard Borel space the associated groupoid and quasi-regular representations are weakly equivalent and weakly contained in the Koopman representation. Moreover, if the action is hyperfinite then the Koopman representation is weakly equivalent to the groupoid. As a corollary of our results we obtain a continuum of pairwise disjoint pairwise equivalent irreducible representations of weakly branch groups. As an illustration we calculate spectra of regular, Koopman and groupoid representations associated to the action of the 2-group of intermediate growth constructed by the second author in 1980.

Citation: Artem Dudko, Rostislav Grigorchuk. On spectra of Koopman, groupoid and quasi-regular representations. Journal of Modern Dynamics, 2017, 11: 99-123. doi: 10.3934/jmd.2017005
References:
[1]

S. AdamsG. Elliot and T. Giordano, Amenable actions of groups, Trans. Amer. Math. Soc., 344 (1994), 803-822. doi: 10.1090/S0002-9947-1994-1250814-5.

[2]

C. Anantharaman-Delaroche, On spectral characterization of amenability, Israel Journal of Mathematics, 137 (2003), pp. 1-33. doi: 10.1007/BF02785954.

[3]

U. Bader and R. Muchnik, Boundary unitary representations – irreducibility and rigidity, Journal of Modern Dynamics, 5 (2011), pp. 49-69. doi: 10.3934/jmd.2011.5.49.

[4]

L. Bartholdi and R. I. Grigorchuk, On the Spectrum of Hecke Type Operators Related to Some Fractal Groups, Tr. Mat. Inst. im. V. A. Steklova, Ross. Akad. Nauk 231 (2000), 5-45; Proc. Steklov Inst. Math. 231 (2000), 1-41.

[5]

L. Bartholdi, R. I. Grigorchuk, and Z. Šunić, Branch Groups, Handbook of Algebra (NorthHolland, Amsterdam, 2003), Vol. 3, pp. 989-1112.

[6]

M. E. B. Bekka and M. Cowling, Some irreducible unitary representation of G(K) for a simple algebraic group G over an algebraic number field K, Math. Z., 241 (2002), 731-741. doi: 10.1007/s00209-002-0442-6.

[7]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan Property (T), Cambridge University Press 2008.

[8]

O. Brattelli and W. Robinson, Operator algebras and quantum statistical mechanics. C*-and W *-algebras. Symmetry Groups. Decomposition of States. Texts and Monographs in Physics. Berlin-Heidelberg-New York, Springer-Verlag, 1987.

[9]

R.V. Chacon and N.A. Friedman, Approximation and invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3 (1965), 286-295. doi: 10.1007/BF00535780.

[10]

T. Chow, A spectral theory for direct integrals of operators, Math. Ann., 188 (1970), pp. 285-303. doi: 10.1007/BF01431463.

[11]

M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices, J. Reine Angew. Math., 420 (1991), 85-98.

[12]

J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars 1969.

[13]

A. Dudko, R. Grigorchuk, On diagonal actions of branch groups and the corresponding characters, arxiv: 1412.5476.

[14]

A. Dudko, R. Grigorchuk, On irreducibility and disjointness of Koopman and quasi-regular representations of weakly branch groups, Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov, AMS Cont. Math. Ser. (2016), to appear.

[15]

A. Dudko and K. Medynets, On Characters of Inductive Limits of Symmetric Groups, Journal of Functional Analysis,, 264 (2013), 1565-1598. doi: 10.1016/j.jfa.2013.01.013.

[16]

J. Feldman and C. Moore, Ergodic equivalence relations. cohomology, and von Neumann algebras.Ⅰ, Trans. Amer. Math. Soc., 234 (1977), 289-324. doi: 10.1090/S0002-9947-1977-0578656-4.

[17]

J. Feldman and C. Moore, Ergodic equivalence relations. cohomology, and von Neumann algebras. Ⅱ, Trans. Amer. Math. Soc., 234 (1977), 325-359. doi: 10.1090/S0002-9947-1977-0578730-2.

[18]

A. Figá-Talamanca and M. A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker Inc., New York, (1983).

[19]

A. Figá-Talamanca, T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Mem. Amer. Math. Soc. 110 (1994), no. 531, ⅶ+68.

[20]

E. Glasner, Ergodic theory via joinings, Math. Surv. and Mon., 101, Amer. Math. Soc. (2003).

[21]

R. I. Grigorchuk, Burnside's Problem on Periodic Groups, Funkts. Anal. Prilozh. 14 (1), 53-54 (1980)[Funct. Anal. Appl. 14, 41-43 (1980)].

[22]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.

[23]

R. I. Grigorchuk, Degrees of growth of p-groups and torsion-free groups (Russian) Mat. Sb. (N. S. ) 126 (168) (1985),194-214.

[24]

R. I. Grigorchuk, Just Infinite Branch Groups, New Horizons in Pro-p Groups (Birkhauser, Boston, MA, 2000), Prog. Math. 184, pp. 121-179.

[25]

R. I. Grigorchuk, Some topics in the dynamics of group actions on rooted trees, Proceedings of the Steklov Institute of Mathematics, 273, Issue 1 (2011), pp. 64-175.

[26]

R. I. Grigorchuk, D. Lenz and T. Smirnova-Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, arXiv: 1412.6822.

[27]

R. I. Grigorchuk and V. Nekrashevich, Amenable actions of non-amenable groups, J. of Math. Sci., 140 (2007), pp. 391-397.

[28]

R. Grigorchuk, V. Nekrashevich, and Z. Sunic, From self-similar groups to self-similar sets and spectra, Fractal Geometry and Stochastics V, 70, series Progress in Probability, pp. 175-207. doi: 10.1007/978-3-319-18660-3_11.

[29]

R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, Automata, Dynamical Systems, and Groups, Tr. Mat. Inst. im. V. A. Steklova, Ross. Akad. Nauk 231,134-214 (2000)[Proc. Steklov Inst. Math. 231,128-203 (2000)].

[30]

R. I. Grigorchuk and Ya. Krylyuk, The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters, Algebra Discrete Math., 13 (2012), pp. 237-272.

[31]

P. de la Harpe, On simplicity of reduced C*-Ualgebras of groups, Bull. London Math. Soc., 39 (2007), pp. 1-26. doi: 10.1112/blms/bdl014.

[32]

N. Higson and G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131-142. doi: 10.1090/S1079-6762-97-00038-3.

[33]

R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras. Vol. Ⅰ. Elementary theory. Pure and Applied Mathematics, 100. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

[34]

R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras. Vol. Ⅱ. Advanced theory. Pure and Applied Mathematics, 100. Academic Press, Inc., Orlando, FL, 1986.

[35]

I. Lysenok, A set of defining relations for the Grigorchuk group, Mat. Zametki, 38 (1985), pp. 503U516..

[36]

S. Kerov and A. Vershik, Characters and factor representations of the infinite symmetric group, Soviet Math. Dokl., 23 (1981), 389-392.

[37]

H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354. doi: 10.1090/S0002-9947-1959-0109367-6.

[38]

G. Kuhn, Amenable actions and weak containment of certain representations of discrete groups, Proc. Amer. Math. Soc., 122 (1994), 751-757. doi: 10.1090/S0002-9939-1994-1209424-3.

[39]

G. Kuhn and T. Steger, More irreducible boundary representations of free groups, Duke Math. J., 82, no. 2 (1996), 381-435. doi: 10.1215/S0012-7094-96-08218-6.

[40]

G. W. Mackey, The Theory of Unitary Group Representations, Univ. Chicago Press, Chicago, 1976, Chicago Lect. Math.

[41]

M. Naimark, Normed rings, Noordhoff, Groningen, 1959, xvi+560pp.

[42]

V. Nekrashevych, Self-similar Groups, Am. Math. Soc., Providence, RI, 2005, Math. Surv. Monogr. 117.

[43]

M. Pichot, Sur la théorie spectrale des relations d'équivalence mesurées, Journal of the Inst. of Math. Jussieu, 3, 6 (2007), 453-500. doi: 10.1017/S1474748007000096.

[44]

D. Powers, Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J., 42 (1975), pp. 151-156. doi: 10.1215/S0012-7094-75-04213-1.

[45]

V. A. Rokhlin, On the basic ideas of measure theory, Mat. Sb. 25 (1) (1949), 107-150. Engl. transl., On the fundamental ideas of measure theory, (Am. Math. Soc., Providence, RI, 1952), AMS Transl., No. 71, 55pp.

[46]

V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, (Russian) Us-pekhi Mat. Nauk, 4 (1949), 57–128

[47]

H. L. Skudlarek, Die unzerlegbaren Charaktere einiger diskreter Gruppen, Math. Ann., 223 (1976), 213-231. doi: 10.1007/BF01360954.

[48]

M. Takesaki, Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences, 124, Operator Algebras and Non-commutative Geometry, 5, Springer-Verlag, Berlin, 2002.

[49]

M. Takesaki, Theory of Operator Algebras. III, Encyclopedia of Mathematical Sciences, 127, Operator Algebras and Non-commutative Geometry, 8, Springer-Verlag, Berlin, 2003.

[50]

R.J. Zimmer, Hyperfinite factors and amenable ergodic actions, Inv. Math., 41 (1977), 23-31. doi: 10.1007/BF01390162.

show all references

References:
[1]

S. AdamsG. Elliot and T. Giordano, Amenable actions of groups, Trans. Amer. Math. Soc., 344 (1994), 803-822. doi: 10.1090/S0002-9947-1994-1250814-5.

[2]

C. Anantharaman-Delaroche, On spectral characterization of amenability, Israel Journal of Mathematics, 137 (2003), pp. 1-33. doi: 10.1007/BF02785954.

[3]

U. Bader and R. Muchnik, Boundary unitary representations – irreducibility and rigidity, Journal of Modern Dynamics, 5 (2011), pp. 49-69. doi: 10.3934/jmd.2011.5.49.

[4]

L. Bartholdi and R. I. Grigorchuk, On the Spectrum of Hecke Type Operators Related to Some Fractal Groups, Tr. Mat. Inst. im. V. A. Steklova, Ross. Akad. Nauk 231 (2000), 5-45; Proc. Steklov Inst. Math. 231 (2000), 1-41.

[5]

L. Bartholdi, R. I. Grigorchuk, and Z. Šunić, Branch Groups, Handbook of Algebra (NorthHolland, Amsterdam, 2003), Vol. 3, pp. 989-1112.

[6]

M. E. B. Bekka and M. Cowling, Some irreducible unitary representation of G(K) for a simple algebraic group G over an algebraic number field K, Math. Z., 241 (2002), 731-741. doi: 10.1007/s00209-002-0442-6.

[7]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan Property (T), Cambridge University Press 2008.

[8]

O. Brattelli and W. Robinson, Operator algebras and quantum statistical mechanics. C*-and W *-algebras. Symmetry Groups. Decomposition of States. Texts and Monographs in Physics. Berlin-Heidelberg-New York, Springer-Verlag, 1987.

[9]

R.V. Chacon and N.A. Friedman, Approximation and invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3 (1965), 286-295. doi: 10.1007/BF00535780.

[10]

T. Chow, A spectral theory for direct integrals of operators, Math. Ann., 188 (1970), pp. 285-303. doi: 10.1007/BF01431463.

[11]

M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices, J. Reine Angew. Math., 420 (1991), 85-98.

[12]

J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars 1969.

[13]

A. Dudko, R. Grigorchuk, On diagonal actions of branch groups and the corresponding characters, arxiv: 1412.5476.

[14]

A. Dudko, R. Grigorchuk, On irreducibility and disjointness of Koopman and quasi-regular representations of weakly branch groups, Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov, AMS Cont. Math. Ser. (2016), to appear.

[15]

A. Dudko and K. Medynets, On Characters of Inductive Limits of Symmetric Groups, Journal of Functional Analysis,, 264 (2013), 1565-1598. doi: 10.1016/j.jfa.2013.01.013.

[16]

J. Feldman and C. Moore, Ergodic equivalence relations. cohomology, and von Neumann algebras.Ⅰ, Trans. Amer. Math. Soc., 234 (1977), 289-324. doi: 10.1090/S0002-9947-1977-0578656-4.

[17]

J. Feldman and C. Moore, Ergodic equivalence relations. cohomology, and von Neumann algebras. Ⅱ, Trans. Amer. Math. Soc., 234 (1977), 325-359. doi: 10.1090/S0002-9947-1977-0578730-2.

[18]

A. Figá-Talamanca and M. A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker Inc., New York, (1983).

[19]

A. Figá-Talamanca, T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Mem. Amer. Math. Soc. 110 (1994), no. 531, ⅶ+68.

[20]

E. Glasner, Ergodic theory via joinings, Math. Surv. and Mon., 101, Amer. Math. Soc. (2003).

[21]

R. I. Grigorchuk, Burnside's Problem on Periodic Groups, Funkts. Anal. Prilozh. 14 (1), 53-54 (1980)[Funct. Anal. Appl. 14, 41-43 (1980)].

[22]

R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.

[23]

R. I. Grigorchuk, Degrees of growth of p-groups and torsion-free groups (Russian) Mat. Sb. (N. S. ) 126 (168) (1985),194-214.

[24]

R. I. Grigorchuk, Just Infinite Branch Groups, New Horizons in Pro-p Groups (Birkhauser, Boston, MA, 2000), Prog. Math. 184, pp. 121-179.

[25]

R. I. Grigorchuk, Some topics in the dynamics of group actions on rooted trees, Proceedings of the Steklov Institute of Mathematics, 273, Issue 1 (2011), pp. 64-175.

[26]

R. I. Grigorchuk, D. Lenz and T. Smirnova-Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, arXiv: 1412.6822.

[27]

R. I. Grigorchuk and V. Nekrashevich, Amenable actions of non-amenable groups, J. of Math. Sci., 140 (2007), pp. 391-397.

[28]

R. Grigorchuk, V. Nekrashevich, and Z. Sunic, From self-similar groups to self-similar sets and spectra, Fractal Geometry and Stochastics V, 70, series Progress in Probability, pp. 175-207. doi: 10.1007/978-3-319-18660-3_11.

[29]

R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, Automata, Dynamical Systems, and Groups, Tr. Mat. Inst. im. V. A. Steklova, Ross. Akad. Nauk 231,134-214 (2000)[Proc. Steklov Inst. Math. 231,128-203 (2000)].

[30]

R. I. Grigorchuk and Ya. Krylyuk, The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters, Algebra Discrete Math., 13 (2012), pp. 237-272.

[31]

P. de la Harpe, On simplicity of reduced C*-Ualgebras of groups, Bull. London Math. Soc., 39 (2007), pp. 1-26. doi: 10.1112/blms/bdl014.

[32]

N. Higson and G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131-142. doi: 10.1090/S1079-6762-97-00038-3.

[33]

R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras. Vol. Ⅰ. Elementary theory. Pure and Applied Mathematics, 100. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

[34]

R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras. Vol. Ⅱ. Advanced theory. Pure and Applied Mathematics, 100. Academic Press, Inc., Orlando, FL, 1986.

[35]

I. Lysenok, A set of defining relations for the Grigorchuk group, Mat. Zametki, 38 (1985), pp. 503U516..

[36]

S. Kerov and A. Vershik, Characters and factor representations of the infinite symmetric group, Soviet Math. Dokl., 23 (1981), 389-392.

[37]

H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354. doi: 10.1090/S0002-9947-1959-0109367-6.

[38]

G. Kuhn, Amenable actions and weak containment of certain representations of discrete groups, Proc. Amer. Math. Soc., 122 (1994), 751-757. doi: 10.1090/S0002-9939-1994-1209424-3.

[39]

G. Kuhn and T. Steger, More irreducible boundary representations of free groups, Duke Math. J., 82, no. 2 (1996), 381-435. doi: 10.1215/S0012-7094-96-08218-6.

[40]

G. W. Mackey, The Theory of Unitary Group Representations, Univ. Chicago Press, Chicago, 1976, Chicago Lect. Math.

[41]

M. Naimark, Normed rings, Noordhoff, Groningen, 1959, xvi+560pp.

[42]

V. Nekrashevych, Self-similar Groups, Am. Math. Soc., Providence, RI, 2005, Math. Surv. Monogr. 117.

[43]

M. Pichot, Sur la théorie spectrale des relations d'équivalence mesurées, Journal of the Inst. of Math. Jussieu, 3, 6 (2007), 453-500. doi: 10.1017/S1474748007000096.

[44]

D. Powers, Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J., 42 (1975), pp. 151-156. doi: 10.1215/S0012-7094-75-04213-1.

[45]

V. A. Rokhlin, On the basic ideas of measure theory, Mat. Sb. 25 (1) (1949), 107-150. Engl. transl., On the fundamental ideas of measure theory, (Am. Math. Soc., Providence, RI, 1952), AMS Transl., No. 71, 55pp.

[46]

V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, (Russian) Us-pekhi Mat. Nauk, 4 (1949), 57–128

[47]

H. L. Skudlarek, Die unzerlegbaren Charaktere einiger diskreter Gruppen, Math. Ann., 223 (1976), 213-231. doi: 10.1007/BF01360954.

[48]

M. Takesaki, Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences, 124, Operator Algebras and Non-commutative Geometry, 5, Springer-Verlag, Berlin, 2002.

[49]

M. Takesaki, Theory of Operator Algebras. III, Encyclopedia of Mathematical Sciences, 127, Operator Algebras and Non-commutative Geometry, 8, Springer-Verlag, Berlin, 2003.

[50]

R.J. Zimmer, Hyperfinite factors and amenable ergodic actions, Inv. Math., 41 (1977), 23-31. doi: 10.1007/BF01390162.

Figure 1.  The set $\Omega$
[1]

Sam Northshield. Quasi-regular graphs, cogrowth, and amenability. Conference Publications, 2003, 2003 (Special) : 678-687. doi: 10.3934/proc.2003.2003.678

[2]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[3]

David Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. Journal of Modern Dynamics, 2007, 1 (1) : 61-92. doi: 10.3934/jmd.2007.1.61

[4]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[5]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[6]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[7]

Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas. Stability of boundary distance representation and reconstruction of Riemannian manifolds. Inverse Problems & Imaging, 2007, 1 (1) : 135-157. doi: 10.3934/ipi.2007.1.135

[8]

Wael Bahsoun, Christopher Bose, Anthony Quas. Deterministic representation for position dependent random maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 529-540. doi: 10.3934/dcds.2008.22.529

[9]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

[10]

Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-24. doi: 10.3934/dcdsb.2018197

[11]

Jason M. Graham, Bruce P. Ayati, Prem S. Ramakrishnan, James A. Martin. Towards a new spatial representation of bone remodeling. Mathematical Biosciences & Engineering, 2012, 9 (2) : 281-295. doi: 10.3934/mbe.2012.9.281

[12]

Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225

[13]

Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565-585. doi: 10.3934/proc.2013.2013.565

[14]

David Damanik, Anton Gorodetski. The spectrum of the weakly coupled Fibonacci Hamiltonian. Electronic Research Announcements, 2009, 16: 23-29. doi: 10.3934/era.2009.16.23

[15]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[16]

Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks & Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127

[17]

Peter Scott and Gadde A. Swarup. Regular neighbourhoods and canonical decompositions for groups. Electronic Research Announcements, 2002, 8: 20-28.

[18]

Tohru Wakasa, Shoji Yotsutani. Representation formulas for some 1-dimensional linearized eigenvalue problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 745-763. doi: 10.3934/cpaa.2008.7.745

[19]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[20]

Stefan Erickson, Michael J. Jacobson, Jr., Andreas Stein. Explicit formulas for real hyperelliptic curves of genus 2 in affine representation. Advances in Mathematics of Communications, 2011, 5 (4) : 623-666. doi: 10.3934/amc.2011.5.623

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (12)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]