2017, 22(3): 1073-1097. doi: 10.3934/dcdsb.2017053

Eigenvectors of homogeneous order-bounded order-preserving maps

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

Received  September 2015 Revised  May 2016 Published  January 2017

The existence of eigenvectors associated with the cone spectral radius is shown for homogenous, order-preserving, continuous maps that have compact and order-bounded powers (iterates). The order-boundedness makes it possible to show the existence of eigenvectors for perturbations of the maps using Hilbert's projective metric, while the power compactness or similar compactness properties together with a uniform continuity condition let the eigenvectors of the perturbations converge to an eigenvector of the original map.

Citation: Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053
References:
[1]

M. Akian, S. Gaubert and R. D. Nussbaum, A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, arXiv: 1112.5968 [math. FA], 2012.

[2]

H. Bauer, Probability Theory and Elements of Measure Theory, sec. ed. , Academic Press, London, 1981.

[3]

G. Birkhoff, Uniformly semi-primitive multiplicative processes, Trans. Amer. Math. Soc., 104 (1962), 37-51. doi: 10.1090/S0002-9947-1962-0146100-6.

[4]

E. Bohl, Eigenwertaufgaben bei monotonen Operatoren und Fehlerabschätzungen für Operatorgleichungen, Arch. Rat. Mech. Anal., 22 (1966), 313-332.

[5]

E. Bohl, Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen, Springer, Berlin Heidelberg, 1974.

[6]

F. F. Bonsall, Linear operators in complete positive cones, Proc. London Math. Soc., 8 (1958), 53-75.

[7]

R. S. Cantrell, C. Cosner, Effects of domain size on the persistence of populations in a diffusive food-chain model with Beddington-DeAngelis functional response, Natur. Resource Modeling, 14 (2001), 335-367. doi: 10.1111/j.1939-7445.2001.tb00062.x.

[8]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, John Wiley & Sons, Ltd. , Chichester, 2003.

[9]

R. S. Cantrell, C. Cosner, V. Hutson, Permanence in ecological systems with spatial heterogeneity, Proc. Royal Soc. Edinburgh Sect. A, 123 (1993), 533-559. doi: 10.1017/S0308210500025877.

[10]

R. S. Cantrell, C. Cosner, V. Hutson, Ecological models, permanence and spatial heterogeneity, Rocky Mountain J. Math., 26 (1996), 1-35. doi: 10.1216/rmjm/1181072101.

[11]

L. Collatz, Einschließungssatz für die Eigenwerte von Integralgleichungen, Math. Z., 47 (1941), 395-398.

[12]

L. Collatz, Einschließungssatz für die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1942), 221-226. doi: 10.1007/BF01180013.

[13]

K. D. Deimling, Nonlinear Functional Analysis, Springer, Berlin Heidelberg, 1985.

[14]

R. M. Dudley, Real Analysis and Probability, sec. ed. , Cambridge University Press, Cambridge, 2002.

[15]

J. H. M. Evers, S. C. Hille, A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Differential Equations, 259 (2015), 1068-1097. doi: 10.1016/j.jde.2015.02.037.

[16]

K.-H. Förster, B. Nagy, On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Linear Algebra and its Applications, 120 (1980), 193-205. doi: 10.1016/0024-3795(89)90378-9.

[17]

P. Gwiazda, A. Marciniak-Czochra, Structured population equations in metric spaces, J. Hyperbolic Differ. Equ., 7 (2010), 733-773. doi: 10.1142/S021989161000227X.

[18]

P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space (tentative title), in preparation.

[19]

K. P. Hadeler, R. Waldstätter, A. Wörz-Busekros, Models for pair formation in bisexual populations, J. Math. Biol., 26 (1988), 635-649. doi: 10.1007/BF00276145.

[20]

K. P. Hadeler, Pair formation in age-structured populations, Acta Appl. Math., 14 (1989), 91-102. doi: 10.1007/BF00046676.

[21]

S. C. Hille, D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371. doi: 10.1007/s00020-008-1652-z.

[22]

W. Jin, H. R. Thieme, An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Disc. Cont. Dyn. Systems B, 21 (2016), 447-470. doi: 10.3934/dcdsb.2016.21.447.

[23]

M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[24]

M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, Positive Linear Systems: The Method of Positive Operators, Heldermann Verlag, Berlin, 1989.

[25]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin Heidelberg, 1984.

[26]

U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models and Applications, De Gruyter, Berlin, 2015.

[27]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space (Russian), Uspehi Mat. Nauk (N. S. ), 3 (1948), 3-95, English Translation, AMS Translation, 1950 (1950), 128pp.

[28]

B. Lemmens, B. Lins, R. D. Nussbaum and M. Wortel, Denjoy-Wolff theorems for Hilbert's and Thompson's metric spaces, J. Analyse Math. , (to appear), arXiv: 1410.1056v2[math. DS]

[29] B. Lemmens, R. D. Nussbaum, Nonlinear Perron-Frobenius Theory, Cambridge, Cambridge University Press, 2012. doi: 10.1017/CBO9781139026079.
[30]

B. Lemmens, R. D. Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math. Soc., 141 (2013), 2741-2754. doi: 10.1090/S0002-9939-2013-11520-0.

[31]

J. Mallet-Paret, R. D. Nussbaum}, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discr. Cont. Dyn. Sys. (DCDS-A), 8 (2002), 519-562. doi: 10.3934/dcds.2002.8.519.

[32]

J. Mallet-Paret, R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory and Appl., 7 (2010), 103-143. doi: 10.1007/s11784-010-0010-3.

[33]

J. Mallet-Paret, R. D. Nussbaum, Asymptotic fixed point theory and the beer barrel theorem, J. Fixed Point Theory Appl., 4 (2008), 203-245. doi: 10.1007/s11784-008-0095-0.

[34]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, (Montecatini, 1981), Lecture Notes in Math. , Springer, Berlin, 1048 (1984), 60-110.

[35]

R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, Fixed Point Theory, (E. Fadell and G. Fournier, eds. ), Springer, Berlin New York, 886 (1981), 309-330.

[36]

R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. , Providence, 75 (1988), ⅳ+137 pp.

[37]

R. D. Nussbaum, Eigenvectors of order-preserving linear operators, J. London Math. Soc., 58 (1998), 480-496. doi: 10.1112/S0024610798006425.

[38]

H. H. Schaefer, Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen, Math. Ann., 129 (1955), 323-329. doi: 10.1007/BF01362375.

[39]

H. H Schaefer, Halbgeordnete lokalkonvexe Vektorräume. Ⅱ, Math. Ann., 138 (1959), 259-286. doi: 10.1007/BF01342907.

[40]

H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.

[41]

H. R. Thieme, Eigenvectors and eigenfunctionals of homogeneous order-preserving maps, arXiv: 1302.3905v1[math. FA], 2013.

[42]

H. R. Thieme, Comparison of spectral radii and Collatz-Wielandt numbers for homogeneous maps, and other applications of the monotone companion norm on ordered normed vector spaces, arXiv: 1406.6657v2[math. FA], 2014 (revised 2016).

[43]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered Structures and Applications, (tentative title), Positivity Ⅶ (Zaanen Centennial Conference) (M. de Jeu, B. de Pagter, O. van Gaans, M. Veraar, eds. ), Birkhäuser, (2016), 415-467.

[44]

H. R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144. doi: 10.1007/s10884-015-9463-9.

[45]

A. C. Thompson, On the eigenvectors of some not-necessarily-linear transformations, Proc. London Math. Soc., 15 (1965), 577-598.

[46]

A. J. Tromba, The beer barrel theorem, a new proof of the asymptotic conjecture in fixed point theory, Functional Differential Equations and Approximations of Fixed Points, (H. -O. Peitgen, H. -O. Walther, eds. ), 484–488, Lecture Notes in Math. 730, Springer, Berlin Heidelberg 1979.

[47]

H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z., 52 (1950), 642-648. doi: 10.1007/BF02230720.

[48]

K. Yosida, Functional Analysis, Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 123 Springer-Verlag New York Inc. , New York, 1968.

[49]

P. P. Zabreiko, M. A. Krasnosel'skii, Yu. V. Pokornyi, On a class of linear positive operators, Functional Analysis and Its Applications, 5 (1971), 272-279.

show all references

References:
[1]

M. Akian, S. Gaubert and R. D. Nussbaum, A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, arXiv: 1112.5968 [math. FA], 2012.

[2]

H. Bauer, Probability Theory and Elements of Measure Theory, sec. ed. , Academic Press, London, 1981.

[3]

G. Birkhoff, Uniformly semi-primitive multiplicative processes, Trans. Amer. Math. Soc., 104 (1962), 37-51. doi: 10.1090/S0002-9947-1962-0146100-6.

[4]

E. Bohl, Eigenwertaufgaben bei monotonen Operatoren und Fehlerabschätzungen für Operatorgleichungen, Arch. Rat. Mech. Anal., 22 (1966), 313-332.

[5]

E. Bohl, Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen, Springer, Berlin Heidelberg, 1974.

[6]

F. F. Bonsall, Linear operators in complete positive cones, Proc. London Math. Soc., 8 (1958), 53-75.

[7]

R. S. Cantrell, C. Cosner, Effects of domain size on the persistence of populations in a diffusive food-chain model with Beddington-DeAngelis functional response, Natur. Resource Modeling, 14 (2001), 335-367. doi: 10.1111/j.1939-7445.2001.tb00062.x.

[8]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, John Wiley & Sons, Ltd. , Chichester, 2003.

[9]

R. S. Cantrell, C. Cosner, V. Hutson, Permanence in ecological systems with spatial heterogeneity, Proc. Royal Soc. Edinburgh Sect. A, 123 (1993), 533-559. doi: 10.1017/S0308210500025877.

[10]

R. S. Cantrell, C. Cosner, V. Hutson, Ecological models, permanence and spatial heterogeneity, Rocky Mountain J. Math., 26 (1996), 1-35. doi: 10.1216/rmjm/1181072101.

[11]

L. Collatz, Einschließungssatz für die Eigenwerte von Integralgleichungen, Math. Z., 47 (1941), 395-398.

[12]

L. Collatz, Einschließungssatz für die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1942), 221-226. doi: 10.1007/BF01180013.

[13]

K. D. Deimling, Nonlinear Functional Analysis, Springer, Berlin Heidelberg, 1985.

[14]

R. M. Dudley, Real Analysis and Probability, sec. ed. , Cambridge University Press, Cambridge, 2002.

[15]

J. H. M. Evers, S. C. Hille, A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Differential Equations, 259 (2015), 1068-1097. doi: 10.1016/j.jde.2015.02.037.

[16]

K.-H. Förster, B. Nagy, On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Linear Algebra and its Applications, 120 (1980), 193-205. doi: 10.1016/0024-3795(89)90378-9.

[17]

P. Gwiazda, A. Marciniak-Czochra, Structured population equations in metric spaces, J. Hyperbolic Differ. Equ., 7 (2010), 733-773. doi: 10.1142/S021989161000227X.

[18]

P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space (tentative title), in preparation.

[19]

K. P. Hadeler, R. Waldstätter, A. Wörz-Busekros, Models for pair formation in bisexual populations, J. Math. Biol., 26 (1988), 635-649. doi: 10.1007/BF00276145.

[20]

K. P. Hadeler, Pair formation in age-structured populations, Acta Appl. Math., 14 (1989), 91-102. doi: 10.1007/BF00046676.

[21]

S. C. Hille, D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371. doi: 10.1007/s00020-008-1652-z.

[22]

W. Jin, H. R. Thieme, An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Disc. Cont. Dyn. Systems B, 21 (2016), 447-470. doi: 10.3934/dcdsb.2016.21.447.

[23]

M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[24]

M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, Positive Linear Systems: The Method of Positive Operators, Heldermann Verlag, Berlin, 1989.

[25]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin Heidelberg, 1984.

[26]

U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models and Applications, De Gruyter, Berlin, 2015.

[27]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space (Russian), Uspehi Mat. Nauk (N. S. ), 3 (1948), 3-95, English Translation, AMS Translation, 1950 (1950), 128pp.

[28]

B. Lemmens, B. Lins, R. D. Nussbaum and M. Wortel, Denjoy-Wolff theorems for Hilbert's and Thompson's metric spaces, J. Analyse Math. , (to appear), arXiv: 1410.1056v2[math. DS]

[29] B. Lemmens, R. D. Nussbaum, Nonlinear Perron-Frobenius Theory, Cambridge, Cambridge University Press, 2012. doi: 10.1017/CBO9781139026079.
[30]

B. Lemmens, R. D. Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math. Soc., 141 (2013), 2741-2754. doi: 10.1090/S0002-9939-2013-11520-0.

[31]

J. Mallet-Paret, R. D. Nussbaum}, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discr. Cont. Dyn. Sys. (DCDS-A), 8 (2002), 519-562. doi: 10.3934/dcds.2002.8.519.

[32]

J. Mallet-Paret, R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory and Appl., 7 (2010), 103-143. doi: 10.1007/s11784-010-0010-3.

[33]

J. Mallet-Paret, R. D. Nussbaum, Asymptotic fixed point theory and the beer barrel theorem, J. Fixed Point Theory Appl., 4 (2008), 203-245. doi: 10.1007/s11784-008-0095-0.

[34]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, (Montecatini, 1981), Lecture Notes in Math. , Springer, Berlin, 1048 (1984), 60-110.

[35]

R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, Fixed Point Theory, (E. Fadell and G. Fournier, eds. ), Springer, Berlin New York, 886 (1981), 309-330.

[36]

R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. , Providence, 75 (1988), ⅳ+137 pp.

[37]

R. D. Nussbaum, Eigenvectors of order-preserving linear operators, J. London Math. Soc., 58 (1998), 480-496. doi: 10.1112/S0024610798006425.

[38]

H. H. Schaefer, Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen, Math. Ann., 129 (1955), 323-329. doi: 10.1007/BF01362375.

[39]

H. H Schaefer, Halbgeordnete lokalkonvexe Vektorräume. Ⅱ, Math. Ann., 138 (1959), 259-286. doi: 10.1007/BF01342907.

[40]

H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.

[41]

H. R. Thieme, Eigenvectors and eigenfunctionals of homogeneous order-preserving maps, arXiv: 1302.3905v1[math. FA], 2013.

[42]

H. R. Thieme, Comparison of spectral radii and Collatz-Wielandt numbers for homogeneous maps, and other applications of the monotone companion norm on ordered normed vector spaces, arXiv: 1406.6657v2[math. FA], 2014 (revised 2016).

[43]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, Ordered Structures and Applications, (tentative title), Positivity Ⅶ (Zaanen Centennial Conference) (M. de Jeu, B. de Pagter, O. van Gaans, M. Veraar, eds. ), Birkhäuser, (2016), 415-467.

[44]

H. R. Thieme, Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144. doi: 10.1007/s10884-015-9463-9.

[45]

A. C. Thompson, On the eigenvectors of some not-necessarily-linear transformations, Proc. London Math. Soc., 15 (1965), 577-598.

[46]

A. J. Tromba, The beer barrel theorem, a new proof of the asymptotic conjecture in fixed point theory, Functional Differential Equations and Approximations of Fixed Points, (H. -O. Peitgen, H. -O. Walther, eds. ), 484–488, Lecture Notes in Math. 730, Springer, Berlin Heidelberg 1979.

[47]

H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z., 52 (1950), 642-648. doi: 10.1007/BF02230720.

[48]

K. Yosida, Functional Analysis, Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 123 Springer-Verlag New York Inc. , New York, 1968.

[49]

P. P. Zabreiko, M. A. Krasnosel'skii, Yu. V. Pokornyi, On a class of linear positive operators, Functional Analysis and Its Applications, 5 (1971), 272-279.

[1]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[2]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[3]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[4]

Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the Birkoff-Kellogg theorem. Conference Publications, 2007, 2007 (Special) : 260-268. doi: 10.3934/proc.2007.2007.260

[5]

P. Magal, H. R. Thieme. Eventual compactness for semiflows generated by nonlinear age-structured models. Communications on Pure & Applied Analysis, 2004, 3 (4) : 695-727. doi: 10.3934/cpaa.2004.3.695

[6]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[7]

Ryszard Rudnicki, Radoslaw Wieczorek. Does assortative mating lead to a polymorphic population? A toy model justification. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 459-472. doi: 10.3934/dcdsb.2018031

[8]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[9]

Daniele Mundici. The Haar theorem for lattice-ordered abelian groups with order-unit. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 537-549. doi: 10.3934/dcds.2008.21.537

[10]

Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617

[11]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[12]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

[13]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[14]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[15]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[16]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[17]

Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173

[18]

John Mallet-Paret, Roger D. Nussbaum. Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 519-562. doi: 10.3934/dcds.2002.8.519

[19]

R. Kowalczyk, A. Gamba, L. Preziosi. On the stability of homogeneous solutions to some aggregation models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 203-220. doi: 10.3934/dcdsb.2004.4.203

[20]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (1)
  • Cited by (1)

Other articles
by authors

[Back to Top]