• Previous Article
    Malaria incidence and anopheles mosquito density in irrigated and adjacent non-irrigated villages of Niono in Mali
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods
2017, 22(3): 859-875. doi: 10.3934/dcdsb.2017043

Persistence in phage-bacteria communities with nested and one-to-one infection networks

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA

Received  August 2015 Revised  January 2016 Published  January 2017

We show that a bacteria and bacteriophage system with either a perfectly nested or a one-to-one infection network is permanent, a.k.a uniformly persistent, provided that bacteria that are superior competitors for nutrient devote the least to defence against infection and the virus that are the most efficient at infectinghost have the smallest host range.By ensuring that the density-dependent reduction in bacterial growth rates are independent of bacterial strain, we are able to arrive at the permanence conclusion sought by Jover et al [3].The same permanence results hold for the one-to-one infection network considered by Thingstad [9] but without virus efficiency ordering.In some special cases, we show the global stability for the nested infection network, and obtain restrictions on the global dynamics for the one-to-one network.

Citation: Dan A. Korytowski, Hal L. Smith. Persistence in phage-bacteria communities with nested and one-to-one infection networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 859-875. doi: 10.3934/dcdsb.2017043
References:
[1]

J. Hale, Ordinary Differential Equations Robert E. Krieger Publishing Co. , Malabar, Fl, 1980.

[2]

J. Hofbauer and K. Sigmund, Evolutionary Games Cambridge Univ. Press, 1998.

[3]

L. F. Jover, M. H. Cortez, J. S. Weitz, Mechanisms of multi-strain coexistence in host-phage systems with nested infection networks, Journal of Theoretical Biology, 332 (2013), 65-77. doi: 10.1016/j.jtbi.2013.04.011.

[4]

D. Korytowski, H. L. Smith, How nested and monogamous infection networks in host-phage communities come to be, Theoretical Ecology, 8 (2015), 111-120. doi: 10.1007/s12080-014-0236-6.

[5]

D. Korytowski and H. L. Smith, Persistence in Phage-Bacteria Communities with Nested and One-to-One Infection Networks arXiv: 1505.03827 [q-bio. PE].

[6]

H. Smith and H. Thieme, Dynamical Systems and Population Persistence GSM 118, Amer. Math. Soc. , Providence R. I. , 2011.

[7]

H. Smith and P. Waltman, The Theory of the Chemostat Cambridge Univ. Press, 1995.

[8]

H. R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435. doi: 10.1137/0524026.

[9]

T. F. Thingstad, Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems, Limnol. Oceanogr., 45 (2000), 1320-1328. doi: 10.4319/lo.2000.45.6.1320.

show all references

References:
[1]

J. Hale, Ordinary Differential Equations Robert E. Krieger Publishing Co. , Malabar, Fl, 1980.

[2]

J. Hofbauer and K. Sigmund, Evolutionary Games Cambridge Univ. Press, 1998.

[3]

L. F. Jover, M. H. Cortez, J. S. Weitz, Mechanisms of multi-strain coexistence in host-phage systems with nested infection networks, Journal of Theoretical Biology, 332 (2013), 65-77. doi: 10.1016/j.jtbi.2013.04.011.

[4]

D. Korytowski, H. L. Smith, How nested and monogamous infection networks in host-phage communities come to be, Theoretical Ecology, 8 (2015), 111-120. doi: 10.1007/s12080-014-0236-6.

[5]

D. Korytowski and H. L. Smith, Persistence in Phage-Bacteria Communities with Nested and One-to-One Infection Networks arXiv: 1505.03827 [q-bio. PE].

[6]

H. Smith and H. Thieme, Dynamical Systems and Population Persistence GSM 118, Amer. Math. Soc. , Providence R. I. , 2011.

[7]

H. Smith and P. Waltman, The Theory of the Chemostat Cambridge Univ. Press, 1995.

[8]

H. R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435. doi: 10.1137/0524026.

[9]

T. F. Thingstad, Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems, Limnol. Oceanogr., 45 (2000), 1320-1328. doi: 10.4319/lo.2000.45.6.1320.

Figure 5.1.  NIN simulation with $n=3$ and parameters: $r_1=6,r_2=5,r_3=3,e_1=3,e_2=2,e_3=1,n_1=n_2=n_3=1,a_1=1,a_2=3,a_3=0.5$
[1]

Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of phage infection of bacteria in a petri dish. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 471-496. doi: 10.3934/dcdsb.2016.21.471

[2]

Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of viral infection of immobilized bacteria. Networks & Heterogeneous Media, 2013, 8 (1) : 327-342. doi: 10.3934/nhm.2013.8.327

[3]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[4]

Curtis L. Wesley, Linda J. S. Allen, Michel Langlais. Models for the spread and persistence of hantavirus infection in rodents with direct and indirect transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 195-211. doi: 10.3934/mbe.2010.7.195

[5]

Ariel D. Weinberger, Alan S. Perelson. Persistence and emergence of X4 virus in HIV infection. Mathematical Biosciences & Engineering, 2011, 8 (2) : 605-626. doi: 10.3934/mbe.2011.8.605

[6]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[7]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[8]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[9]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[10]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[11]

Wendi Wang. Epidemic models with nonlinear infection forces. Mathematical Biosciences & Engineering, 2006, 3 (1) : 267-279. doi: 10.3934/mbe.2006.3.267

[12]

Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959-977. doi: 10.3934/mbe.2013.10.959

[13]

Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics & Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016

[14]

Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149

[15]

T. S. Evans, A. D. K. Plato. Network rewiring models. Networks & Heterogeneous Media, 2008, 3 (2) : 221-238. doi: 10.3934/nhm.2008.3.221

[16]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[17]

Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics & Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377

[18]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[19]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[20]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]