# American Institute of Mathematical Sciences

• Previous Article
Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units
• DCDS-B Home
• This Issue
• Next Article
The Filippov equilibrium and sliding motion in an internet congestion control model
May 2017, 22(3): 1167-1187. doi: 10.3934/dcdsb.2017057

## Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion

 1 Department of Mathematics, University of Louisiana at Lafayette, 105 E. University Circle, Lafayette, LA 70503, USA 2 Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA 3 Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, FL 32611, USA

* Corresponding author: yixiang.wu@vanderbilt.edu. Current address: Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240, USA

** The authors are partially supported by NSF grant DMS-1220342 and DMS-1515661/DMS-1515442

Received  August 2015 Revised  November 2015 Published  December 2016

This paper investigates a two strain SIS model with diffusion, spatially heterogeneous coefficients of the reaction part and distinct diffusion rates of the separate epidemiological classes. First, it is shown that the model has bounded classical solutions. Next, it is established that the model with spatially homogeneous coefficients leads to competitive exclusion and no coexistence is possible in this case. Furthermore, it is proved that if the invasion number of strain $j$ is larger than one, then the equilibrium of strain $i$ is unstable; if, on the other hand, the invasion number of strain $j$ is smaller than one, then the equilibrium of strain $i$ is neutrally stable. In the case when all diffusion rates are equal, global results on competitive exclusion and coexistence of the strains are established. Finally, evolution of dispersal scenario is considered and it is shown that the equilibrium of the strain with the larger diffusion rate is unstable. Simulations suggest that in this case the equilibrium of the strain with the smaller diffusion rate is stable.

Citation: Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057
##### References:
 [1] A. S. Ackleh, K. Deng and Y. Wu, Competitive exclusion and coexistence in a two-strain pathogen model with diffusion, Math. Biosci. Eng., 13 (2016), 1-18. doi: 10.3934/mbe.2016.13.1. [2] L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic Profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete and Continuous Dynamical Systems, Series A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. [3] H. J. Bremermann and H. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol., 27 (1989), 179-190. doi: 10.1007/BF00276102. [4] R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations Wiley, Chichester, West Sussex, UK, 2003. [5] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete and Continuous Dynamical Systems, 34 (2014), 1701-1745. doi: 10.3934/dcds.2014.34.1701. [6] Dockery, Hutson, Mischaikow and Polácik, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120. [7] L. Dung, Dissipativity and global attractors for a class of quasilinear parabolic systems, Communications in Partial Differential Equations, 22 (1997), 413-433. doi: 10.1080/03605309708821269. [8] Hsu, Smith and Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Transactions of the American Mathematical Society, 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2. [9] Hutson, Mischaikow and Polácik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533. doi: 10.1007/s002850100106. [10] K. I. Kim, Z. Lin and L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear Analysis: Real World Applications, 11 (2010), 313-322. doi: 10.1016/j.nonrwa.2008.11.015. [11] K. Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous completion-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712. doi: 10.1137/120869481. [12] J. Lopez-Gomez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems Nonlinear Analysis: Theory, Methods & Applications 31 (1998), 687-699. [13] K. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212. doi: 10.1080/17513758.2014.969336. [14] Lou and Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171. doi: 10.1016/j.jde.2015.02.004. [15] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342. doi: 10.1007/s00285-013-0730-2. [16] M. Martcheva, B. M. Bolker and R. D. Holt, Vaccine-induced pathogen strain replacement: What are the mechanisms?, J. Royal Sco. Interface, 5 (2008), 3-13. doi: 10.1098/rsif.2007.0236. [17] M. Mimura, Coexistence in competition-diffusion systems, differential equations models in biology, epidemiology and ecology, Lecture Notes in Biomathematics, 92 (1991), 235-246. doi: 10.1007/978-3-642-45692-3_17. [18] Z. Qiu, Q. Kong, X. Li and M. Martcheva, The vector-host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013), 12-36. doi: 10.1016/j.jmaa.2013.03.042. [19] N. Tuncer and M. Martcheva, Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion, Journal of Biological Dynamics, 6 (2012), 406-439. doi: 10.1080/17513758.2011.614697. [20] P. Waltman, Coexistence in chemostat-like models, Rocky Mountain J. Math., 20 (1990), 777-807. doi: 10.1216/rmjm/1181073042.

show all references

##### References:
 [1] A. S. Ackleh, K. Deng and Y. Wu, Competitive exclusion and coexistence in a two-strain pathogen model with diffusion, Math. Biosci. Eng., 13 (2016), 1-18. doi: 10.3934/mbe.2016.13.1. [2] L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic Profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete and Continuous Dynamical Systems, Series A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. [3] H. J. Bremermann and H. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol., 27 (1989), 179-190. doi: 10.1007/BF00276102. [4] R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations Wiley, Chichester, West Sussex, UK, 2003. [5] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete and Continuous Dynamical Systems, 34 (2014), 1701-1745. doi: 10.3934/dcds.2014.34.1701. [6] Dockery, Hutson, Mischaikow and Polácik, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120. [7] L. Dung, Dissipativity and global attractors for a class of quasilinear parabolic systems, Communications in Partial Differential Equations, 22 (1997), 413-433. doi: 10.1080/03605309708821269. [8] Hsu, Smith and Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Transactions of the American Mathematical Society, 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2. [9] Hutson, Mischaikow and Polácik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533. doi: 10.1007/s002850100106. [10] K. I. Kim, Z. Lin and L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear Analysis: Real World Applications, 11 (2010), 313-322. doi: 10.1016/j.nonrwa.2008.11.015. [11] K. Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous completion-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712. doi: 10.1137/120869481. [12] J. Lopez-Gomez and R. M. Pardo, Invertibility of linear noncooperative elliptic systems Nonlinear Analysis: Theory, Methods & Applications 31 (1998), 687-699. [13] K. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 188-212. doi: 10.1080/17513758.2014.969336. [14] Lou and Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171. doi: 10.1016/j.jde.2015.02.004. [15] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342. doi: 10.1007/s00285-013-0730-2. [16] M. Martcheva, B. M. Bolker and R. D. Holt, Vaccine-induced pathogen strain replacement: What are the mechanisms?, J. Royal Sco. Interface, 5 (2008), 3-13. doi: 10.1098/rsif.2007.0236. [17] M. Mimura, Coexistence in competition-diffusion systems, differential equations models in biology, epidemiology and ecology, Lecture Notes in Biomathematics, 92 (1991), 235-246. doi: 10.1007/978-3-642-45692-3_17. [18] Z. Qiu, Q. Kong, X. Li and M. Martcheva, The vector-host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013), 12-36. doi: 10.1016/j.jmaa.2013.03.042. [19] N. Tuncer and M. Martcheva, Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion, Journal of Biological Dynamics, 6 (2012), 406-439. doi: 10.1080/17513758.2011.614697. [20] P. Waltman, Coexistence in chemostat-like models, Rocky Mountain J. Math., 20 (1990), 777-807. doi: 10.1216/rmjm/1181073042.
Experiment 1 Total population in the homogeneous coefficient case
Experiment 1 The two pathogen strains at final time $t=150$
Experiment 2 Total population with large diffusion rate
Experiment 3 Total population with small diffusion rate
Experiment 4 Susceptible and infected individuals at time $t=100$. The top figure is showing the final state of susceptible individuals. The bottom figure is showing the coexistence of strains $I_1$ and $I_2$ at time $t=100$
Total population in the case $d_1>d_2$
 [1] Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481 [2] Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1 [3] Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048 [4] Matthias Büger. Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 691-708. doi: 10.3934/dcds.1998.4.691 [5] Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75 [6] H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 [7] Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683 [8] Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773 [9] Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 [10] Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 [11] Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175 [12] Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037 [13] Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012 [14] H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans. A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences & Engineering, 2012, 9 (4) : 699-736. doi: 10.3934/mbe.2012.9.699 [15] Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701 [16] Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 [17] Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663 [18] Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots. Journal of Modern Dynamics, 2012, 6 (4) : 539-561. doi: 10.3934/jmd.2012.6.539 [19] Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517 [20] Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

2017 Impact Factor: 0.972