May 2017, 22(3): 831-840. doi: 10.3934/dcdsb.2017041

Extinction and uniform strong persistence of a size-structured population model

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

* Corresponding author

Dedicated to Steve Cantrell in honor of his 60th birthday

Received  August 2015 Revised  January 2016 Published  December 2016

Fund Project: Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

In this paper, we study the long-time behavior of a size-structured population model. We define a basic reproduction number $\mathcal{R}$ and show that the population dies out in the long run if $\mathcal{R}<1$. If $\mathcal{R}>1$, the model has a unique positive equilibrium, and the total population is uniformly strongly persistent. Most importantly, we show that there exists a subsequence of the total population converging to the positive equilibrium.

Citation: Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041
References:
[1]

A. S. Ackleh and K. Deng, Existence-uniqueness of solutions for a nonlinear nonautonomous size-structured population model: an upper-lower solution approach, Canadian Appl. Math. Quart., 8 (2000), 1-15. doi: 10.1216/camq/1008957333.

[2]

H. T. BanksS. L. Ernstberger and S. Hu, Sensitivity equations for a size-structured population model, Quart. Appl. Math., 67 (2009), 627-660. doi: 10.1090/S0033-569X-09-01105-1.

[3]

H. T. Banks and F. Kappel, Transformation semigroups and $L^1$-approximation for size structure population models, Semigroup Forum, 38 (1989), 141-155. doi: 10.1007/BF02573227.

[4]

H. T. BanksF. Kappel and C. Wang, A semigroup formulation of a nonlinear size-structured distributed rate population model, Internat. Ser. Numer. Math., 118 (1994), 1-19.

[5]

A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364. doi: 10.1007/BF00176377.

[6]

A. Calsina and M. Sanchon, Stability and instability of equilibria of an equation of size structured population dynamics, J. Math. Anal. Appl., 286 (2003), 435-452. doi: 10.1016/S0022-247X(03)00464-5.

[7]

K. Deng and Y. Wang, Sensitivity analysis for a nonlinear size-structured population model, Quart. Appl. Math., 73 (2015), 401-417. doi: 10.1090/qam/1366.

[8]

J. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real World Appl., 6 (2005), 962-969. doi: 10.1016/j.nonrwa.2004.06.002.

[9]

J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136. doi: 10.1016/j.jmaa.2006.05.032.

[10]

Z. Feng and H. R. Thieme, Endemic models with arbitrarily distributed periods of infection Ⅰ: Fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803-833. doi: 10.1137/S0036139998347834.

[11]

Z. FengL. Rong and R. K. Swihart, Dynamics of an age-structured metapopulation model, Natural Resource Modeling, 18 (2005), 415-440. doi: 10.1111/j.1939-7445.2005.tb00166.x.

[12]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics Giardini Editori e Stampatori, Pisa, 1995.

[13]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations Lecture Notes in Biomath. , 68 Springer-Verlag, Berlin, 1986.

[14]

H. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows, Proc. Amer. Math. Soc., 127 (1999), 2395-2403. doi: 10.1090/S0002-9939-99-05034-0.

show all references

References:
[1]

A. S. Ackleh and K. Deng, Existence-uniqueness of solutions for a nonlinear nonautonomous size-structured population model: an upper-lower solution approach, Canadian Appl. Math. Quart., 8 (2000), 1-15. doi: 10.1216/camq/1008957333.

[2]

H. T. BanksS. L. Ernstberger and S. Hu, Sensitivity equations for a size-structured population model, Quart. Appl. Math., 67 (2009), 627-660. doi: 10.1090/S0033-569X-09-01105-1.

[3]

H. T. Banks and F. Kappel, Transformation semigroups and $L^1$-approximation for size structure population models, Semigroup Forum, 38 (1989), 141-155. doi: 10.1007/BF02573227.

[4]

H. T. BanksF. Kappel and C. Wang, A semigroup formulation of a nonlinear size-structured distributed rate population model, Internat. Ser. Numer. Math., 118 (1994), 1-19.

[5]

A. Calsina and J. Saldana, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364. doi: 10.1007/BF00176377.

[6]

A. Calsina and M. Sanchon, Stability and instability of equilibria of an equation of size structured population dynamics, J. Math. Anal. Appl., 286 (2003), 435-452. doi: 10.1016/S0022-247X(03)00464-5.

[7]

K. Deng and Y. Wang, Sensitivity analysis for a nonlinear size-structured population model, Quart. Appl. Math., 73 (2015), 401-417. doi: 10.1090/qam/1366.

[8]

J. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real World Appl., 6 (2005), 962-969. doi: 10.1016/j.nonrwa.2004.06.002.

[9]

J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136. doi: 10.1016/j.jmaa.2006.05.032.

[10]

Z. Feng and H. R. Thieme, Endemic models with arbitrarily distributed periods of infection Ⅰ: Fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803-833. doi: 10.1137/S0036139998347834.

[11]

Z. FengL. Rong and R. K. Swihart, Dynamics of an age-structured metapopulation model, Natural Resource Modeling, 18 (2005), 415-440. doi: 10.1111/j.1939-7445.2005.tb00166.x.

[12]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics Giardini Editori e Stampatori, Pisa, 1995.

[13]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations Lecture Notes in Biomath. , 68 Springer-Verlag, Berlin, 1986.

[14]

H. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows, Proc. Amer. Math. Soc., 127 (1999), 2395-2403. doi: 10.1090/S0002-9939-99-05034-0.

[1]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations & Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[2]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[3]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[4]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[5]

Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015

[6]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[7]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[8]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[9]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[10]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[11]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[12]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[13]

József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825

[14]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[15]

Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289

[16]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

[17]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[18]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[19]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[20]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (9)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]