May 2017, 22(3): 717-740. doi: 10.3934/dcdsb.2017035

Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response

Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje 13615, C.P. 97119, Mérida, Mexico

* Corresponding author: avila@correo.uady.mx

Dedicated to Professor Stephen Cantrell on the occasion of his 60th birthday.

Received  August 2015 Revised  June 2016 Published  December 2016

In this article, the clasical Bazykin model is modifed with Bedding–ton–DeAngelis functional response, subject to self and cross-diffusion, in order to study the spatial dynamics of the model.We perform a detailed stability and Hopf bifurcation analysis of the spatial model system and determine the direction of Hopf bifurcation and stability of the bifurcating periodic solutions. We present some numerical simulations of time evolution of patterns to show the important role played by self and cross-diffusion as well as other parameters leading to complex patterns in the plane.

Citation: Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035
References:
[1]

D. AlonsoF. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83 (2002), 28-34.

[2]

J. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, The Journal of Animal Ecology, 44 (1975), 331-340. doi: 10.2307/3866.

[3]

Q. BieQ. Wang and Z.-a. Yao, Cross-diffusion induced instability and pattern formation for a Holling type-Ⅱ predator–prey model, Applied Mathematics and Computation, 247 (2014), 1-12. doi: 10.1016/j.amc.2014.08.088.

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations John Wiley & Sons, 2003.

[5]

D. L. DeAngelisR. Goldstein and R. O'neill, A model for tropic interaction, Ecology, 56 (1975), 881-892. doi: 10.2307/1936298.

[6]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Vol. 42, Springer-Verlag, New York, 1990.

[7]

G.-P. Hu and X.-L. Li, Turing patterns of a predator–prey model with a modified Leslie–Gower term and cross-diffusions, International Journal of Biomathematics, 5 (2012), 1250060, 17 pp. doi: 10.1142/S179352451250060X.

[8]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory vol. 112, Springer Science & Business Media, 2004.

[9]

H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation Chapman & Hall/CRC Press London, 2008.

[10]

E. A. McGeheeN. SchuttD. A. Vasquez and E. Peacock-Lopez, Bifurcations, and temporal and spatial patterns of a modified lotka–volterra model, International Journal of Bifurcation and Chaos, 18 (2008), 2223-2248. doi: 10.1142/S0218127408021671.

[11]

J. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications Intercisciplinary Applied Mathematics: Mathematical Biology, Springer, 2003.

[12]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives Springer, 2001.

[13]

S. SarwardiM. Haque and P. K. Mandal, Persistence and global stability of bazykin predator–prey model with beddington–deangelis response function, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 189-209. doi: 10.1016/j.cnsns.2013.05.029.

[14]

J. Shen and Y. M. Jung, Geometric and stochastic analysis of reaction-diffusion patterns, Int J Pure Appl Math, 19 (2005), 195-248.

[15]

H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference, IMA Journal of Applied Mathematics, 80 (2015), 1534-1568. doi: 10.1093/imamat/hxv006.

[16]

E. TulumelloM. C. Lombardo and M. Sammartino, Cross-diffusion driven instability in a predator-prey system with cross-diffusion, Acta Applicandae Mathematicae, 132 (2014), 621-633. doi: 10.1007/s10440-014-9935-7.

[17]

A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012.

[18]

R. K. UpadhyayP. Roy and J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and turing instability, Nonlinear Dynamics, 79 (2015), 2251-2270. doi: 10.1007/s11071-014-1808-0.

[19]

X. Wang and Y. Cai, Cross-diffusion-driven instability in a reaction-diffusion harrison predator-prey model, in Abstract and Applied Analysis Hindawi Publishing Corporation, 2013 (2013), Art. ID 306467, 9 pp.

[20]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system, Journal of Differential Equations, 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

[21]

E. Zemskov, Nonlinear analysis of a reaction-diffusion system: Amplitude equations, Journal of Experimental and Theoretical Physics, 115 (2012), 729-732. doi: 10.1134/S1063776112090178.

[22]

E. ZemskovK. KassnerM. Hauser and W. Horsthemke, Turing space in reaction-diffusion systems with density-dependent cross diffusion, Physical Review E, 87 (2013), 032906. doi: 10.1103/PhysRevE.87.032906.

[23]

J.-F. ZhangW.-T. Li and Y.-X. Wang, Turing patterns of a strongly coupled predator–prey system with diffusion effects, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 847-858. doi: 10.1016/j.na.2010.09.035.

[24]

J. Zhou, Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type Ⅲ functional response, Nonlinear Dynamics, 81 (2015), 1535-1552. doi: 10.1007/s11071-015-2088-z.

show all references

References:
[1]

D. AlonsoF. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83 (2002), 28-34.

[2]

J. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, The Journal of Animal Ecology, 44 (1975), 331-340. doi: 10.2307/3866.

[3]

Q. BieQ. Wang and Z.-a. Yao, Cross-diffusion induced instability and pattern formation for a Holling type-Ⅱ predator–prey model, Applied Mathematics and Computation, 247 (2014), 1-12. doi: 10.1016/j.amc.2014.08.088.

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations John Wiley & Sons, 2003.

[5]

D. L. DeAngelisR. Goldstein and R. O'neill, A model for tropic interaction, Ecology, 56 (1975), 881-892. doi: 10.2307/1936298.

[6]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Vol. 42, Springer-Verlag, New York, 1990.

[7]

G.-P. Hu and X.-L. Li, Turing patterns of a predator–prey model with a modified Leslie–Gower term and cross-diffusions, International Journal of Biomathematics, 5 (2012), 1250060, 17 pp. doi: 10.1142/S179352451250060X.

[8]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory vol. 112, Springer Science & Business Media, 2004.

[9]

H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation Chapman & Hall/CRC Press London, 2008.

[10]

E. A. McGeheeN. SchuttD. A. Vasquez and E. Peacock-Lopez, Bifurcations, and temporal and spatial patterns of a modified lotka–volterra model, International Journal of Bifurcation and Chaos, 18 (2008), 2223-2248. doi: 10.1142/S0218127408021671.

[11]

J. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications Intercisciplinary Applied Mathematics: Mathematical Biology, Springer, 2003.

[12]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives Springer, 2001.

[13]

S. SarwardiM. Haque and P. K. Mandal, Persistence and global stability of bazykin predator–prey model with beddington–deangelis response function, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 189-209. doi: 10.1016/j.cnsns.2013.05.029.

[14]

J. Shen and Y. M. Jung, Geometric and stochastic analysis of reaction-diffusion patterns, Int J Pure Appl Math, 19 (2005), 195-248.

[15]

H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference, IMA Journal of Applied Mathematics, 80 (2015), 1534-1568. doi: 10.1093/imamat/hxv006.

[16]

E. TulumelloM. C. Lombardo and M. Sammartino, Cross-diffusion driven instability in a predator-prey system with cross-diffusion, Acta Applicandae Mathematicae, 132 (2014), 621-633. doi: 10.1007/s10440-014-9935-7.

[17]

A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012.

[18]

R. K. UpadhyayP. Roy and J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and turing instability, Nonlinear Dynamics, 79 (2015), 2251-2270. doi: 10.1007/s11071-014-1808-0.

[19]

X. Wang and Y. Cai, Cross-diffusion-driven instability in a reaction-diffusion harrison predator-prey model, in Abstract and Applied Analysis Hindawi Publishing Corporation, 2013 (2013), Art. ID 306467, 9 pp.

[20]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system, Journal of Differential Equations, 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

[21]

E. Zemskov, Nonlinear analysis of a reaction-diffusion system: Amplitude equations, Journal of Experimental and Theoretical Physics, 115 (2012), 729-732. doi: 10.1134/S1063776112090178.

[22]

E. ZemskovK. KassnerM. Hauser and W. Horsthemke, Turing space in reaction-diffusion systems with density-dependent cross diffusion, Physical Review E, 87 (2013), 032906. doi: 10.1103/PhysRevE.87.032906.

[23]

J.-F. ZhangW.-T. Li and Y.-X. Wang, Turing patterns of a strongly coupled predator–prey system with diffusion effects, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 847-858. doi: 10.1016/j.na.2010.09.035.

[24]

J. Zhou, Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type Ⅲ functional response, Nonlinear Dynamics, 81 (2015), 1535-1552. doi: 10.1007/s11071-015-2088-z.

Figure 1.  Relation between $H(k^{2})$ and $ \Re( \lambda ) $ for $ \det( \Phi_w(w^{*}) ) <0$. (a) $H(k^{2})$ (b) $ \Re( \lambda ) $
Figure 2.  Relation between $H(k^{2})$ (a) and $ \Re( \lambda ) $ (b) for $ \det( \Phi_w(w^{*}) ) >0$
Figure 3.  Functions $s=0$ (solid line) and $g=0$ (dashed line)
Figure 4.  Phase plane of local system for $ \beta=1.1 $
Figure 5.  Prey and predator densities for $\alpha_{12}=0.0001$. a) $u$ with $t_{max}=0$, b) $v$ with $t_{max}=0$, c) $u$ with $t_{max}=50$, d) $v$ with $t_{max}=50$, e) $u$ with $t_{max}=200$, f) $v$ with $t_{max}=200$
Figure 6.  Prey and predator densities for example 2, with $\alpha_{12}=0.0001$ and $t_{max}=400$. a) $u$ density b) $v$ density. Both figures show a pattern called holes
Figure 7.  Prey and predator densities for example 3, with $\alpha_{12}=0.0001$ and $t_{max}=1000$. a) $u$ density b) $v$ density. Both figures show a pattern called stripes
[1]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[2]

Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042

[3]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[4]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[5]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[6]

Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang. On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2331-2353. doi: 10.3934/dcdsb.2013.18.2331

[7]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[8]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[9]

Georg Hetzer, Anotida Madzvamuse, Wenxian Shen. Characterization of turing diffusion-driven instability on evolving domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3975-4000. doi: 10.3934/dcds.2012.32.3975

[10]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[11]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[12]

Steffen Härting, Anna Marciniak-Czochra, Izumi Takagi. Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 757-800. doi: 10.3934/dcds.2017032

[13]

Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022

[14]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[15]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[16]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[17]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[18]

Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207

[19]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[20]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (14)
  • HTML views (4)
  • Cited by (0)

[Back to Top]