# American Institute of Mathematical Sciences

March  2017, 10(1): 1-32. doi: 10.3934/krm.2017001

## Opinion dynamics over complex networks: Kinetic modelling and numerical methods

 1 TU München, Faculty of Mathematics, Boltzmannstra$\mathcal{B}$ e 3, D-85748, Garching (München), Germany 2 University of Ferrara, Department of Mathematics and Computer Science, Via N. Machiavelli 35,44121, Ferrara, Italy

Received  March 2016 Revised  May 2016 Published  November 2016

In this paper we consider the modeling of opinion dynamics over time dependent large scale networks. A kinetic description of the agents' distribution over the evolving network is considered which combines an opinion update based on binary interactions between agents with a dynamic creation and removal process of new connections. The number of connections of each agent influences the spreading of opinions in the network but also the way connections are created is influenced by the agents' opinion. The evolution of the network of connections is studied by showing that its asymptotic behavior is consistent both with Poisson distributions and truncated power-laws. In order to study the large time behavior of the opinion dynamics a mean field description is derived which allows to compute exact stationary solutions in some simplified situations. Numerical methods which are capable to describe correctly the large time behavior of the system are also introduced and discussed. Finally, several numerical examples showing the influence of the agents' number of connections in the opinion dynamics are reported.

Citation: Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001
##### References:

show all references

##### References:
Stationary states of (21) with relaxation coefficients ${V_r}={V_a}=1$, mean density of connectivity $\gamma=30$, ${{c}_{\max }}=1500$ and several values of the attraction parameters $\alpha$, and having fixed $\beta = 0$. Left: convergence toward the Poisson distribution for big values of $\alpha$. Right: convergence toward a power-law distribution in the limit $\alpha\rightarrow 0$, we indicated with $p_{\infty}^{(-k)}, k=1,2,3$ the $\alpha-$dependent stationary solutions for $\alpha=10^{-1},10^{-2},10^{-3}$, respectively.
Stationary solutions of type $f_\infty(w,c) = g_\infty(w)p_\infty(c)$, where $g_\infty(w)$ is given by (51) with $\kappa =1$, $m_w = 0$, $\sigma^2 = 0.05$ and $p_\infty(c)$ defined by (25), with ${V_r}={V_a}=1$, $\gamma=30$ and $\alpha = 10$ on the left and $\alpha = 0.1$ on the right.
Stationary solutions captured via Monte Carlo simulations, with $N_s=2\times10^4$ samples. Parameters of the model are chosen as follows $\sigma^2 = 0.05$, ${V_r}={V_a}=1$, $\beta = 0$, $\alpha = 10$ on the right hand side and $\alpha =0.1$ on the left hand side.
Test $\#1$. One-dimensional setting: on the left, convergence of (58) to the stationary solution (51), of the Fokker-Planck equation, for decreasing values of the parameter $\varepsilon$, $g^N_0$ represents the initial distribution. On the right, convergence of the Monte-Carlo (55) to the reference solution (24) for increasing values of the the number of samples $N_s$.
Test $\#1.$ One-dimensional setting: on the left, the solution of the Chang-Cooper type scheme with the flux (70) is indicated with $g^N_T$ and compared with the stationary solution (51), also the initial data $g^N_0$ (72) is reported. On the right we report the decay of the $L^1$ relative error (73) for different choices of the quadrature rule, mid-point rule (67) and Milne's rule (respectively of $2^{nd}$ and $4^{th}$ order).
Test $\#2.$ From left to right and from the top to the bottom: evolution of the density $f(w,c,t)$ at different time steps. The plot $(a)$ represents the initial data $f_0(w,c)$ (74) and plot $(d)$ the stationary solution. On the plane $(z,c)$ we depict with a blu line the marginal distribution $p(c,t)$ of the solution at time $t$, with red line we represent the reference marginal distribution of the stationary solution.
Test $\#2.$ Decay of the $L^1$ relative error with respect to the stationary solution (51). On the left, fixed characteristic rates $V=\{10^3,10^4,10^5\}$, on the right, variable characteristic rates defined as in (76) with $U =\{10^3,10^4,10^5\}$. In both cases for increasing values of the characteristic rate $V$ and $U$ the stationary state is reached faster.
Test $\#2.$ Evolution at time $t = 1$ of the initial data $f_0(w, c)$ (74) as isoline plot. On the left in the case of constant characteristic rate on the right variable characteristic rates defined as in (76). The right plot shows that for lower opinion's density the evolution along the connection is faster and slower where the opinions are more concentrated.
Test $\#3.$ From left to right and from the first row to the second row, evolution of the initial data (78) in time frame $[0,T]$ with $T = 2$. The evolution shows how a small portion of density with high connectivity can bias the majority of the population towards their position. (Note: The density is scaled according to the marginal distribution $\rho(c,t)$ in order to better show its evolution, the actual marginal density $\rho(c,t)$ is depicted in the background, scaled by a factor 10).
Test $\#3.$ On the left-hand side final and initial state of the marginal distribution $g(w,t)$ of the opinion, the green line represents the evolution of the average opinion $\bar{m}(t)$, the red and blue dashed lines represent respectively the opinions $\bar{w}_L=0.75$ and $\bar{w}_F=-0.5$, which are the two leading opinions of the initial data (78).
Test $\#4.$ Evolution of the Fokker-Planck model (41) where the interaction are described by (80) with $\Delta=0.25$, in the time frame $[0,T]$ with $T = 100$. The evolution shows the emergence of three main opinion clusters, which are not affected by the connectivity variable. (Note: In order to better show its evolution, we represent the solution as $\log(f(w,c,t)+\epsilon)$, with $\epsilon = 0.001$.)
Test $\#4.$ Evolution of the solution of the Fokker-Planck model (41), where the interaction are described by (79) with $\Delta(c)=d_0c/{c_{\max }}$ and $d_0=1.01$, in the time frame $[0,T]$ with $T = 100$. The choice of $\Delta(c)$ reflects in the heterogeneous emergence of clusters with respect to the connectivity level: for higher level of connectivity consensus is reached, instead for lower levels of connectivity multiple opinion clusters are present. (Note: In order to better show its evolution, we represent the solution as $\log(f(w,c,t)+\epsilon)$, with $\epsilon = 0.001$.
Parameters in the various test cases
 Test $\sigma^2$ $\sigma^2_F$ $\sigma^2_L$ ${{c}_{\max }}$ ${V_r}$ ${V_a}$ $\gamma_0$ $\alpha$ $\beta$ #1 $5\times10^{-2}$ $6\times10^{-2}$ $-$ $250$ $1$ 1 $30$ $1\times10^{-1}$ $0$ #2 $5\times10^{-2}$ $6\times10^{-2}$ $-$ $250$ $-$ $-$ $30$ $1\times10^{-1}$ $0$ #3 $5\times10^{-3}$ $4\times10^{-2}$ $2.5\times10^{-2}$ 250 $1$ $1$ 30 $1\times10^{-4}$ $0$ #4 $1\times10^{-3}$ $-$ $-$ 250 $1$ $1$ 30 $1\times10^{-1}$ $0$
 Test $\sigma^2$ $\sigma^2_F$ $\sigma^2_L$ ${{c}_{\max }}$ ${V_r}$ ${V_a}$ $\gamma_0$ $\alpha$ $\beta$ #1 $5\times10^{-2}$ $6\times10^{-2}$ $-$ $250$ $1$ 1 $30$ $1\times10^{-1}$ $0$ #2 $5\times10^{-2}$ $6\times10^{-2}$ $-$ $250$ $-$ $-$ $30$ $1\times10^{-1}$ $0$ #3 $5\times10^{-3}$ $4\times10^{-2}$ $2.5\times10^{-2}$ 250 $1$ $1$ 30 $1\times10^{-4}$ $0$ #4 $1\times10^{-3}$ $-$ $-$ 250 $1$ $1$ 30 $1\times10^{-1}$ $0$
 [1] Dong-Uk Hwang, S. Boccaletti, Y. Moreno, R. López-Ruiz. Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks. Mathematical Biosciences & Engineering, 2005, 2 (2) : 317-327. doi: 10.3934/mbe.2005.2.317 [2] Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151 [3] Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415 [4] Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman. The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks & Heterogeneous Media, 2008, 3 (2) : 333-343. doi: 10.3934/nhm.2008.3.333 [5] Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561 [6] Michael Blank. Emergence of collective behavior in dynamical networks. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 313-329. doi: 10.3934/dcdsb.2013.18.313 [7] Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286 [8] Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011 [9] Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 [10] Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155 [11] Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083 [12] Laurent Boudin, Francesco Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic & Related Models, 2009, 2 (3) : 433-449. doi: 10.3934/krm.2009.2.433 [13] Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495 [14] Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i [15] Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 [16] Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 [17] Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 [18] Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34 [19] Gabrielle Demange. Collective attention and ranking methods. Journal of Dynamics & Games, 2014, 1 (1) : 17-43. doi: 10.3934/jdg.2014.1.17 [20] Nick Cercone, F'IEEE. What's the big deal about big data?. Big Data & Information Analytics, 2016, 1 (1) : 31-79. doi: 10.3934/bdia.2016.1.31

2018 Impact Factor: 1.38