2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

Mean action and the Calabi invariant

1. 

Department of Mathematics, 970 Evans Hall, University of California, Berkeley, CA 94720, United States

Received  December 2015 Revised  August 2016 Published  November 2016

Given an area-preserving diffeomorphism of the closed unit disk which is a rotation near the boundary, one can naturally define an ``action'' function on the disk which agrees with the rotation number on the boundary. The Calabi invariant of the diffeomorphism is the average of the action function over the disk. Given a periodic orbit of the diffeomorphism, its ``mean action'' is defined to be the average of the action function over the orbit. We show that if the Calabi invariant is less than the boundary rotation number, then the infimum over periodic orbits of the mean action is less than or equal to the Calabi invariant. The proof uses a new filtration on embedded contact homology determined by a transverse knot, which may be of independent interest. (An analogue of this filtration can be defined for any other version of contact homology in three dimensions that counts holomorphic curves.)
Citation: Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511
References:
[1]

A. Abbondandolo, B. Bramham, U. Hryniewicz and P. Salamão, Sharp systolic inequalities for Reeb flows on the three-sphere,, , ().

[2]

E. Calabi, On the group of automorphisms of a symplectic manifold,, in Problems in Analysis (Lectures at the Sympos. in honor of S. Bochner, (1969), 1.

[3]

V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions,, , ().

[4]

D. Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology,, Algebr. Geom. Topol., 13 (2013), 2239. doi: 10.2140/agt.2013.13.2239.

[5]

D. Cristofaro-Gardiner, M. Hutchings and V. Ramos, The asymptotics of ECH capacities,, Invent. Math., 199 (2015), 187. doi: 10.1007/s00222-014-0510-7.

[6]

Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds,, in Topological Methods in Modern Mathematics, (1993), 171.

[7]

M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology,, Int. Math. Res. Not., (2003), 1635. doi: 10.1155/S1073792803210011.

[8]

J. Etnyre, Legendrian and transversal knots,, in Handbook of Knot Theory, (2005), 105. doi: 10.1016/B978-044451452-3/50004-6.

[9]

J. Franks, Area preserving homeomorphisms of open surfaces of genus zero,, New York J. Math., 2 (1996), 1.

[10]

J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques,, Topology, 36 (1997), 1355. doi: 10.1016/S0040-9383(97)00001-3.

[11]

H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations. II. Embedding controls and algebraic invariants,, Geom. and Func. Anal., 5 (1995), 270. doi: 10.1007/BF01895669.

[12]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197. doi: 10.2307/120994.

[13]

H. Hofer, K. Wysock and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics,, Ann. of Math. (2), 157 (2003), 125. doi: 10.4007/annals.2003.157.125.

[14]

M. Hutchings, Quantitative embedded contact homology,, J. Diff. Geom., 88 (2011), 231.

[15]

M. Hutchings, Lecture notes on embedded contact homology,, in Contact and Symplectic Topology, (2014), 389. doi: 10.1007/978-3-319-02036-5_9.

[16]

M. Hutchings, Embedded contact homology as a (symplectic) field theory,, in preparation., ().

[17]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I,, J. Symplectic Geom., 5 (2007), 43. doi: 10.4310/JSG.2007.v5.n1.a5.

[18]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II,, J. Symplectic Geom., 7 (2009), 29. doi: 10.4310/JSG.2009.v7.n1.a2.

[19]

M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture in three dimensions, II,, Geom. Topol., 17 (2013), 2601. doi: 10.2140/gt.2013.17.2601.

[20]

P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds,, Cambridge Univ. Press, (2007). doi: 10.1017/CBO9780511543111.

[21]

R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders,, Comm. Pure Appl. Math., 61 (2008), 1631. doi: 10.1002/cpa.20224.

[22]

C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I,, Geom. Topol., 14 (2010), 2497. doi: 10.2140/gt.2010.14.2497.

show all references

References:
[1]

A. Abbondandolo, B. Bramham, U. Hryniewicz and P. Salamão, Sharp systolic inequalities for Reeb flows on the three-sphere,, , ().

[2]

E. Calabi, On the group of automorphisms of a symplectic manifold,, in Problems in Analysis (Lectures at the Sympos. in honor of S. Bochner, (1969), 1.

[3]

V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions,, , ().

[4]

D. Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology,, Algebr. Geom. Topol., 13 (2013), 2239. doi: 10.2140/agt.2013.13.2239.

[5]

D. Cristofaro-Gardiner, M. Hutchings and V. Ramos, The asymptotics of ECH capacities,, Invent. Math., 199 (2015), 187. doi: 10.1007/s00222-014-0510-7.

[6]

Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds,, in Topological Methods in Modern Mathematics, (1993), 171.

[7]

M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology,, Int. Math. Res. Not., (2003), 1635. doi: 10.1155/S1073792803210011.

[8]

J. Etnyre, Legendrian and transversal knots,, in Handbook of Knot Theory, (2005), 105. doi: 10.1016/B978-044451452-3/50004-6.

[9]

J. Franks, Area preserving homeomorphisms of open surfaces of genus zero,, New York J. Math., 2 (1996), 1.

[10]

J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques,, Topology, 36 (1997), 1355. doi: 10.1016/S0040-9383(97)00001-3.

[11]

H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations. II. Embedding controls and algebraic invariants,, Geom. and Func. Anal., 5 (1995), 270. doi: 10.1007/BF01895669.

[12]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197. doi: 10.2307/120994.

[13]

H. Hofer, K. Wysock and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics,, Ann. of Math. (2), 157 (2003), 125. doi: 10.4007/annals.2003.157.125.

[14]

M. Hutchings, Quantitative embedded contact homology,, J. Diff. Geom., 88 (2011), 231.

[15]

M. Hutchings, Lecture notes on embedded contact homology,, in Contact and Symplectic Topology, (2014), 389. doi: 10.1007/978-3-319-02036-5_9.

[16]

M. Hutchings, Embedded contact homology as a (symplectic) field theory,, in preparation., ().

[17]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I,, J. Symplectic Geom., 5 (2007), 43. doi: 10.4310/JSG.2007.v5.n1.a5.

[18]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II,, J. Symplectic Geom., 7 (2009), 29. doi: 10.4310/JSG.2009.v7.n1.a2.

[19]

M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture in three dimensions, II,, Geom. Topol., 17 (2013), 2601. doi: 10.2140/gt.2013.17.2601.

[20]

P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds,, Cambridge Univ. Press, (2007). doi: 10.1017/CBO9780511543111.

[21]

R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders,, Comm. Pure Appl. Math., 61 (2008), 1631. doi: 10.1002/cpa.20224.

[22]

C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I,, Geom. Topol., 14 (2010), 2497. doi: 10.2140/gt.2010.14.2497.

[1]

Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 2011, 5 (3) : 409-472. doi: 10.3934/jmd.2011.5.409

[2]

Asaf Kislev. Compactly supported Hamiltonian loops with a non-zero Calabi invariant. Electronic Research Announcements, 2014, 21: 80-88. doi: 10.3934/era.2014.21.80

[3]

Gianne Derks, Sara Maad, Björn Sandstede. Perturbations of embedded eigenvalues for the bilaplacian on a cylinder. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 801-821. doi: 10.3934/dcds.2008.21.801

[4]

Radu Saghin. Note on homology of expanding foliations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[5]

Hongnian Huang. On the extension and smoothing of the Calabi flow on complex tori. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6153-6164. doi: 10.3934/dcds.2017265

[6]

Octav Cornea and Francois Lalonde. Cluster homology: An overview of the construction and results. Electronic Research Announcements, 2006, 12: 1-12.

[7]

S. Aiello, Luigi Barletti, Aldo Belleni-Morante. Identification of photon sources, stochastically embedded in an interstellar cloud. Kinetic & Related Models, 2009, 2 (3) : 425-432. doi: 10.3934/krm.2009.2.425

[8]

Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907-915. doi: 10.3934/mbe.2015.12.907

[9]

Stephen Coughlan, Łukasz Gołębiowski, Grzegorz Kapustka, Michał Kapustka. Arithmetically Gorenstein Calabi--Yau threefolds in $\mathbb{P}^7$. Electronic Research Announcements, 2016, 23: 52-68. doi: 10.3934/era.2016.23.006

[10]

Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587

[11]

Sarah Day; William D. Kalies; Konstantin Mischaikow and Thomas Wanner. Probabilistic and numerical validation of homology computations for nodal domains. Electronic Research Announcements, 2007, 13: 60-73.

[12]

Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529

[13]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[14]

Peter Albers, Urs Frauenfelder. Spectral invariants in Rabinowitz-Floer homology and global Hamiltonian perturbations. Journal of Modern Dynamics, 2010, 4 (2) : 329-357. doi: 10.3934/jmd.2010.4.329

[15]

Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61

[16]

Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407

[17]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[18]

Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1227-1251. doi: 10.3934/mbe.2013.10.1227

[19]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[20]

Abbas Bahri. Recent results in contact form geometry. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]