2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

The automorphism group of a minimal shift of stretched exponential growth

1. 

Department of Mathematics, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, United States

2. 

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, United States

Received  September 2015 Revised  August 2016 Published  October 2016

The group of automorphisms of a symbolic dynamical system is countable, but often very large. For example, for a mixing subshift of finite type, the automorphism group contains isomorphic copies of the free group on two generators and the direct sum of countably many copies of $\mathbb{Z}$. In contrast, the group of automorphisms of a symbolic system of zero entropy seems to be highly constrained. Our main result is that the automorphism group of any minimal subshift of stretched exponential growth with exponent $<1/2$, is amenable (as a countable discrete group). For shifts of polynomial growth, we further show that any finitely generated, torsion free subgroup of Aut(X) is virtually nilpotent.
Citation: Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483
References:
[1]

H. Bass, The degree of polynomial growth of finitely generated nilpotent groups,, Proc. London Math. Soc. (3), 25 (1972), 603.

[2]

M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type,, Trans. Amer. Math. Soc., 306 (1988), 71. doi: 10.1090/S0002-9947-1988-0927684-2.

[3]

E. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts, using atypical equivalence classes,, Discrete Anal., (2016), 1. doi: 10.19086/da.611.

[4]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth,, Proc. Amer. Math. Soc., 144 (2016), 613. doi: 10.1090/proc12719.

[5]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: beyond transitivity,, Forum Math. Sigma, 3 (2015). doi: 10.1017/fms.2015.3.

[6]

P. de la Harpe, Topics in Geometric Group Theory,, Chicago Lectures in Mathematics, (2000).

[7]

S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts,, Ergodic Theory Dynam. Systems, 36 (2016), 64. doi: 10.1017/etds.2015.70.

[8]

S. Donoso, F. Durand, A. Maass and S. Petite, Private, communication., ().

[9]

M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53.

[10]

Y. Guivarc'h, Groupes de Lie á croissance polynomiale,, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971).

[11]

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,, Math. Systems Theory, 3 (1969), 320. doi: 10.1007/BF01691062.

[12]

M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1. doi: 10.2307/2371431.

[13]

K. H. Kim and F. W. Roush, On the automorphism groups of subshifts,, Pure Math. Appl. Ser. B, 1 (1990), 203.

[14]

V. Salo, Toeplitz subshift whose automorphism group is not finitely generated,, Colloquium Mathematicum, (2016). doi: 10.4064/cm6463-2-2016.

[15]

V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions,, Ergodic Theory and Dynam. Systems, 35 (2015), 2292. doi: 10.1017/etds.2014.29.

[16]

L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic,, J. Algebra, 89 (1984), 349. doi: 10.1016/0021-8693(84)90223-0.

show all references

References:
[1]

H. Bass, The degree of polynomial growth of finitely generated nilpotent groups,, Proc. London Math. Soc. (3), 25 (1972), 603.

[2]

M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type,, Trans. Amer. Math. Soc., 306 (1988), 71. doi: 10.1090/S0002-9947-1988-0927684-2.

[3]

E. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts, using atypical equivalence classes,, Discrete Anal., (2016), 1. doi: 10.19086/da.611.

[4]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth,, Proc. Amer. Math. Soc., 144 (2016), 613. doi: 10.1090/proc12719.

[5]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: beyond transitivity,, Forum Math. Sigma, 3 (2015). doi: 10.1017/fms.2015.3.

[6]

P. de la Harpe, Topics in Geometric Group Theory,, Chicago Lectures in Mathematics, (2000).

[7]

S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts,, Ergodic Theory Dynam. Systems, 36 (2016), 64. doi: 10.1017/etds.2015.70.

[8]

S. Donoso, F. Durand, A. Maass and S. Petite, Private, communication., ().

[9]

M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53.

[10]

Y. Guivarc'h, Groupes de Lie á croissance polynomiale,, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971).

[11]

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,, Math. Systems Theory, 3 (1969), 320. doi: 10.1007/BF01691062.

[12]

M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1. doi: 10.2307/2371431.

[13]

K. H. Kim and F. W. Roush, On the automorphism groups of subshifts,, Pure Math. Appl. Ser. B, 1 (1990), 203.

[14]

V. Salo, Toeplitz subshift whose automorphism group is not finitely generated,, Colloquium Mathematicum, (2016). doi: 10.4064/cm6463-2-2016.

[15]

V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions,, Ergodic Theory and Dynam. Systems, 35 (2015), 2292. doi: 10.1017/etds.2014.29.

[16]

L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic,, J. Algebra, 89 (1984), 349. doi: 10.1016/0021-8693(84)90223-0.

[1]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[2]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[3]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[4]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[5]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[6]

Dino Festi, Alice Garbagnati, Bert Van Geemen, Ronald Van Luijk. The Cayley-Oguiso automorphism of positive entropy on a K3 surface. Journal of Modern Dynamics, 2013, 7 (1) : 75-97. doi: 10.3934/jmd.2013.7.75

[7]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[8]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[9]

A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195

[10]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[11]

L'ubomír Snoha, Vladimír Špitalský. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 821-835. doi: 10.3934/dcds.2006.14.821

[12]

Elon Lindenstrauss. Pointwise theorems for amenable groups. Electronic Research Announcements, 1999, 5: 82-90.

[13]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[14]

Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685

[15]

Arvind Ayyer, Carlangelo Liverani, Mikko Stenlund. Quenched CLT for random toral automorphism. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 331-348. doi: 10.3934/dcds.2009.24.331

[16]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[17]

Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299

[18]

Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63.

[19]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[20]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]