2016, 36(12): 6645-6656. doi: 10.3934/dcds.2016088

Haldane linearisation done right: Solving the nonlinear recombination equation the easy way

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  February 2016 Revised  July 2016 Published  October 2016

The nonlinear recombination equation from population genetics has a long history and is notoriously difficult to solve, both in continuous and in discrete time. This is particularly so if one aims at full generality, thus also including degenerate parameter cases. Due to recent progress for the continuous time case via the identification of an underlying stochastic fragmentation process, it became clear that a direct general solution at the level of the corresponding ODE itself should also be possible. This paper shows how to do it, and how to extend the approach to the discrete-time case as well.
Citation: Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088
References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997). doi: 10.1007/978-3-642-59101-3.

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.

[4]

E. Baake, M. Baake and M. Salamat, The general recombination equation in continuous time and its solution,, Discr. Cont. Dynam. Syst. A, 36 (2016), 63. doi: 10.3934/dcds.2016.36.63.

[5]

M. Baake, Recombination semigroups on measure spaces},, Monatsh. Math., 146 (2005), 267. doi: 10.1007/s00605-005-0326-z.

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3. doi: 10.4153/CJM-2003-001-0.

[7]

M. Baake and E. Shamsara, The recombination equation for interval partitions,, preprint, ().

[8]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.

[9]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).

[10]

F. B. Christiansen, Population Genetics of Multiple Loci,, Wiley, (1999).

[11]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1. doi: 10.1006/tpbi.2000.1471.

[12]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115. doi: 10.1016/S0024-3795(01)00586-9.

[13]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25. doi: 10.1214/aoms/1177731313.

[14]

H. S. Jennings, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage., Genetics, 2 (1917), 97.

[15]

Y. I. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992). doi: 10.1007/978-3-642-76211-6.

[16]

S. Martínez, A probabilistic analysis of a discrete-time evolution in recombination, preprint,, , ().

[17]

D. McHale and G. A. Ringwood, Haldane linearisation of baric algebras,, J. London Math. Soc., 28 (1983), 17. doi: 10.1112/jlms/s2-28.1.17.

[18]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103. doi: 10.1007/s002850050143.

[19]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).

[20]

R. B. Robbins, Some applications of mathematics to breeding problems III., Genetics, 3 (1918), 375.

[21]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727. doi: 10.1007/s00285-009-0277-4.

show all references

References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997). doi: 10.1007/978-3-642-59101-3.

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.

[4]

E. Baake, M. Baake and M. Salamat, The general recombination equation in continuous time and its solution,, Discr. Cont. Dynam. Syst. A, 36 (2016), 63. doi: 10.3934/dcds.2016.36.63.

[5]

M. Baake, Recombination semigroups on measure spaces},, Monatsh. Math., 146 (2005), 267. doi: 10.1007/s00605-005-0326-z.

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3. doi: 10.4153/CJM-2003-001-0.

[7]

M. Baake and E. Shamsara, The recombination equation for interval partitions,, preprint, ().

[8]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.

[9]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).

[10]

F. B. Christiansen, Population Genetics of Multiple Loci,, Wiley, (1999).

[11]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1. doi: 10.1006/tpbi.2000.1471.

[12]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115. doi: 10.1016/S0024-3795(01)00586-9.

[13]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25. doi: 10.1214/aoms/1177731313.

[14]

H. S. Jennings, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage., Genetics, 2 (1917), 97.

[15]

Y. I. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992). doi: 10.1007/978-3-642-76211-6.

[16]

S. Martínez, A probabilistic analysis of a discrete-time evolution in recombination, preprint,, , ().

[17]

D. McHale and G. A. Ringwood, Haldane linearisation of baric algebras,, J. London Math. Soc., 28 (1983), 17. doi: 10.1112/jlms/s2-28.1.17.

[18]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103. doi: 10.1007/s002850050143.

[19]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).

[20]

R. B. Robbins, Some applications of mathematics to breeding problems III., Genetics, 3 (1918), 375.

[21]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727. doi: 10.1007/s00285-009-0277-4.

[1]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[2]

Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365

[3]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[4]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[5]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[6]

Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821

[7]

Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617

[8]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

[9]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[10]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

[11]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

[12]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[13]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[14]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[15]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[16]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[17]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[18]

Hassan Najafi Alishah, João Lopes Dias. Realization of tangent perturbations in discrete and continuous time conservative systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5359-5374. doi: 10.3934/dcds.2014.34.5359

[19]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[20]

Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics & Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]