2016, 9(1): 173-183. doi: 10.3934/dcdss.2016.9.173

On weak solutions to a diffuse interface model of a binary mixture of compressible fluids

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1

Received  September 2014 Revised  February 2015 Published  December 2015

We consider the Euler-Cahn-Hilliard system proposed by Lowengrub and Truskinovsky describing the motion of a binary mixture of compressible fluids. We show that the associated initial-value problem possesses infinitely many global-in-time weak solutions for any finite energy initial data. A modification of the method of convex integration is used to prove the result.
Citation: Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173
References:
[1]

T. Blesgen, A generalization of the Navier-Stokes equations to two-phase flow,, J. Phys. D Appl. Phys., 32 (1999), 1119. doi: 10.1088/0022-3727/32/10/307.

[2]

E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system,, J. Hyperbolic Differ. Equ., 11 (2014), 493. doi: 10.1142/S0219891614500143.

[3]

E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics,, Communications on Pure and Applied Mathematics, 68 (2015), 1157. doi: 10.1002/cpa.21537.

[4]

E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas,, Annal. Inst. Poincaré, 32 (2015), 225. doi: 10.1016/j.anihpc.2013.11.005.

[5]

C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations,, Arch. Ration. Mech. Anal., 195 (2010), 225. doi: 10.1007/s00205-008-0201-x.

[6]

C. De Lellis and L. Székelyhidi, Jr., The $h$-principle and the equations of fluid dynamics,, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 347. doi: 10.1090/S0273-0979-2012-01376-9.

[7]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogenous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9.

[8]

D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems,, Commun. Partial Differential Equations, 40 (2015), 1314. doi: 10.1080/03605302.2014.972517.

[9]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617. doi: 10.1098/rspa.1998.0273.

[10]

V. Scheffer, An inviscid flow with compact support in space-time,, J. Geom. Anal., 3 (1993), 343. doi: 10.1007/BF02921318.

[11]

A. Shnirelman, Weak solutions of incompressible Euler equations,, in Handbook of Mathematical Fluid Dynamics, (2003), 87. doi: 10.1016/S1874-5792(03)80005-8.

[12]

L. Tartar, Compensated compactness and applications to partial differential equations,, in Nonlinear Anal. and Mech., (1979), 136.

show all references

References:
[1]

T. Blesgen, A generalization of the Navier-Stokes equations to two-phase flow,, J. Phys. D Appl. Phys., 32 (1999), 1119. doi: 10.1088/0022-3727/32/10/307.

[2]

E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system,, J. Hyperbolic Differ. Equ., 11 (2014), 493. doi: 10.1142/S0219891614500143.

[3]

E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics,, Communications on Pure and Applied Mathematics, 68 (2015), 1157. doi: 10.1002/cpa.21537.

[4]

E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas,, Annal. Inst. Poincaré, 32 (2015), 225. doi: 10.1016/j.anihpc.2013.11.005.

[5]

C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations,, Arch. Ration. Mech. Anal., 195 (2010), 225. doi: 10.1007/s00205-008-0201-x.

[6]

C. De Lellis and L. Székelyhidi, Jr., The $h$-principle and the equations of fluid dynamics,, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 347. doi: 10.1090/S0273-0979-2012-01376-9.

[7]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogenous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9.

[8]

D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems,, Commun. Partial Differential Equations, 40 (2015), 1314. doi: 10.1080/03605302.2014.972517.

[9]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617. doi: 10.1098/rspa.1998.0273.

[10]

V. Scheffer, An inviscid flow with compact support in space-time,, J. Geom. Anal., 3 (1993), 343. doi: 10.1007/BF02921318.

[11]

A. Shnirelman, Weak solutions of incompressible Euler equations,, in Handbook of Mathematical Fluid Dynamics, (2003), 87. doi: 10.1016/S1874-5792(03)80005-8.

[12]

L. Tartar, Compensated compactness and applications to partial differential equations,, in Nonlinear Anal. and Mech., (1979), 136.

[1]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[2]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

[3]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[4]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[5]

John W. Barrett, Harald Garcke, Robert Nürnberg. On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 1-14. doi: 10.3934/dcdss.2008.1.1

[6]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[7]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[8]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[9]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[10]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[11]

Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353

[12]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[13]

Mathias Wilke. $L_p$-theory for a Cahn-Hilliard-Gurtin system. Evolution Equations & Control Theory, 2012, 1 (2) : 393-429. doi: 10.3934/eect.2012.1.393

[14]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[15]

Gisèle Ruiz Goldstein, Alain Miranville. A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 387-400. doi: 10.3934/dcdss.2013.6.387

[16]

T. Tachim Medjo. Robust control of a Cahn-Hilliard-Navier-Stokes model. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2075-2101. doi: 10.3934/cpaa.2016028

[17]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[18]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[19]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[20]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]