2016, 9(1): 105-129. doi: 10.3934/krm.2016.9.105

Kinetic derivation of fractional Stokes and Stokes-Fourier systems

1. 

RICAM Linz, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received  September 2014 Revised  July 2015 Published  October 2015

In recent works it has been demonstrated that using an appropriate rescaling, linear Boltzmann-type equations give rise to a scalar fractional diffusion equation in the limit of a small mean free path. The equilibrium distributions are typically heavy-tailed distributions, but also classical Gaussian equilibrium distributions allow for this phenomena if combined with a degenerate collision frequency for small velocities. This work aims to an extension in the sense that a linear BGK-type equation conserving not only mass, but also momentum and energy, for both mentioned regimes of equilibrium distributions is considered. In the hydrodynamic limit we obtain a fractional diffusion equation for the temperature and density making use of the Boussinesq relation and we also demonstrate that with the same rescaling fractional diffusion cannot be derived additionally for the momentum. But considering the case of conservation of mass and momentum only, we do obtain the incompressible Stokes equation with fractional diffusion in the hydrodynamic limit for heavy-tailed equilibria.
Citation: Sabine Hittmeir, Sara Merino-Aceituno. Kinetic derivation of fractional Stokes and Stokes-Fourier systems. Kinetic & Related Models, 2016, 9 (1) : 105-129. doi: 10.3934/krm.2016.9.105
References:
[1]

C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence,, Arch. Ration. Mech. Anal., 71 (1979), 237. doi: 10.1007/BF00280598.

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation,, Math. Models Methods Appl. Sci., 1 (1991), 235. doi: 10.1142/S0218202591000137.

[3]

N. Ben Abdallah, P. Degond, F. Deluzet, V. Latocha, R. Talaalout and M. H. Vignal, Diffusion limits of kinetic models,, Hyperbolic problems: theory, (2003), 3.

[4]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., 21 (2011), 2249. doi: 10.1142/S0218202511005738.

[5]

N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach,, Kinet. Relat. Models, 4 (2011), 873. doi: 10.3934/krm.2011.4.873.

[6]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Boundary layer analysis in homogeneization of diffusion equations with Dirichlet conditions in the half space., Proc. int. Symp. on stochastic differential equations, (1978), 21.

[7]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails,, J. Stat. Phys., 124 (2006), 497. doi: 10.1007/s10955-006-9044-8.

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equation,, J. Comput. Phys., 203 (2005), 572. doi: 10.1016/j.jcp.2004.09.006.

[9]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.

[10]

B. Düring and G. Toscani, International and domestic trading and wealth distribution., Commun. Math. Sci., 6 (2008), 1043. doi: 10.4310/CMS.2008.v6.n4.a12.

[11]

F. Golse, Hydrodynamic Limits,, European Congress of Mathematics, (2005), 699.

[12]

F. Golse and C. D. Levermore, Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs., Comm. Pure Appl. Math., 55 (2002), 336. doi: 10.1002/cpa.3011.

[13]

M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain,, Ann. Appl. Probab., 19 (2009), 2270. doi: 10.1214/09-AAP610.

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199 (2011), 493. doi: 10.1007/s00205-010-0354-2.

[15]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method,, Indiana Univ. Math. J., 59 (2010), 1333. doi: 10.1512/iumj.2010.59.4128.

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[17]

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation,, Lecture Notes in Mathematics, (2009). doi: 10.1007/978-3-540-92847-8.

[18]

H. Struchtrup, The BGK-model with velocity-dependent collision frequency,, Contin. Mech. Thermodyn., 9 (1997), 23. doi: 10.1007/s001610050053.

[19]

D. Summers and R. M. Thorne, The modified plasma dispersion function,, Phys. Fluids B, 3 (1991), 1835. doi: 10.1063/1.859653.

[20]

J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803. doi: 10.1007/s00220-005-1483-6.

show all references

References:
[1]

C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence,, Arch. Ration. Mech. Anal., 71 (1979), 237. doi: 10.1007/BF00280598.

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation,, Math. Models Methods Appl. Sci., 1 (1991), 235. doi: 10.1142/S0218202591000137.

[3]

N. Ben Abdallah, P. Degond, F. Deluzet, V. Latocha, R. Talaalout and M. H. Vignal, Diffusion limits of kinetic models,, Hyperbolic problems: theory, (2003), 3.

[4]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., 21 (2011), 2249. doi: 10.1142/S0218202511005738.

[5]

N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach,, Kinet. Relat. Models, 4 (2011), 873. doi: 10.3934/krm.2011.4.873.

[6]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Boundary layer analysis in homogeneization of diffusion equations with Dirichlet conditions in the half space., Proc. int. Symp. on stochastic differential equations, (1978), 21.

[7]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails,, J. Stat. Phys., 124 (2006), 497. doi: 10.1007/s10955-006-9044-8.

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equation,, J. Comput. Phys., 203 (2005), 572. doi: 10.1016/j.jcp.2004.09.006.

[9]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.

[10]

B. Düring and G. Toscani, International and domestic trading and wealth distribution., Commun. Math. Sci., 6 (2008), 1043. doi: 10.4310/CMS.2008.v6.n4.a12.

[11]

F. Golse, Hydrodynamic Limits,, European Congress of Mathematics, (2005), 699.

[12]

F. Golse and C. D. Levermore, Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs., Comm. Pure Appl. Math., 55 (2002), 336. doi: 10.1002/cpa.3011.

[13]

M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain,, Ann. Appl. Probab., 19 (2009), 2270. doi: 10.1214/09-AAP610.

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199 (2011), 493. doi: 10.1007/s00205-010-0354-2.

[15]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method,, Indiana Univ. Math. J., 59 (2010), 1333. doi: 10.1512/iumj.2010.59.4128.

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[17]

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation,, Lecture Notes in Mathematics, (2009). doi: 10.1007/978-3-540-92847-8.

[18]

H. Struchtrup, The BGK-model with velocity-dependent collision frequency,, Contin. Mech. Thermodyn., 9 (1997), 23. doi: 10.1007/s001610050053.

[19]

D. Summers and R. M. Thorne, The modified plasma dispersion function,, Phys. Fluids B, 3 (1991), 1835. doi: 10.1063/1.859653.

[20]

J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803. doi: 10.1007/s00220-005-1483-6.

[1]

Hivert Hélène. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[2]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[3]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[4]

Lei Wu. Diffusive limit with geometric correction of unsteady neutron transport equation. Kinetic & Related Models, 2017, 10 (4) : 1163-1203. doi: 10.3934/krm.2017045

[5]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[6]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[7]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[8]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[9]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[10]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[11]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[12]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[13]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[14]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[15]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[16]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[17]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[18]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow . Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[19]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[20]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]