2016, 9(1): 75-103. doi: 10.3934/krm.2016.9.75

Global existence of weak solution to the free boundary problem for compressible Navier-Stokes

1. 

Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi'an 710069, China

2. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China

Received  October 2014 Revised  August 2015 Published  October 2015

In this paper, the compressible Navier-Stokes system (CNS) with constant viscosity coefficients is considered in three space dimensions. we prove the global existence of spherically symmetric weak solutions to the free boundary problem for the CNS with vacuum and free boundary separating fluids and vacuum. In addition, the free boundary is shown to expand outward at an algebraic rate in time.
Citation: Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75
References:
[1]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243. doi: 10.1016/j.matpur.2003.11.004.

[2]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Differ. Eqs., 190 (2003), 504. doi: 10.1016/S0022-0396(03)00015-9.

[3]

H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids,, Math. Methods Appl., 28 (2005), 1. doi: 10.1002/mma.545.

[4]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358. doi: 10.1007/PL00000976.

[5]

E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid,, Indiana Univ. Math. J., 53 (2004), 1705. doi: 10.1512/iumj.2004.53.2510.

[6]

E. Feireisl, Dynamics of Viscous Compressible Fluids,, Oxford University Press, (2004).

[7]

Z. H. Guo, H. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations,, Commun. Math. Phys., 309 (2012), 371. doi: 10.1007/s00220-011-1334-6.

[8]

D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169. doi: 10.2307/2000785.

[9]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225. doi: 10.1512/iumj.1992.41.41060.

[10]

D. Hoff, Global existence of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data,, J. Diff. Eqs., 120 (1995), 215. doi: 10.1006/jdeq.1995.1111.

[11]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rat. Mech. Anal., 132 (1995), 1. doi: 10.1007/BF00390346.

[12]

D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces,, Arch. Ration. Mech. Anal., 173 (2004), 297. doi: 10.1007/s00205-004-0318-5.

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887. doi: 10.1137/0151043.

[14]

X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549. doi: 10.1002/cpa.21382.

[15]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559. doi: 10.1007/PL00005543.

[16]

H. Kong, Global Existence of Spherically Symmetric Weak Solutions to the Free Boundary Value Problem of 3D Isentropic Compressible Navier-Stokes Equations,, Master thesis, (2014).

[17]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.

[18]

P. L. Lions, Mathematical Topics in Fluid Mechanics,, Vol. 2. Compressible models, (1998).

[19]

T. Luo, Z. P. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175. doi: 10.1137/S0036141097331044.

[20]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heatconductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.

[21]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France, 90 (1962), 487.

[22]

M. Okada, Free boundary problem for the equation of one dimensional motion of viscous gas,, Japan J. Appl. Math., 6 (1989), 161. doi: 10.1007/BF03167921.

[23]

M. Okada and T. Makino, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas,, Japan J. Appl. Math., 10 (1993), 219. doi: 10.1007/BF03167573.

[24]

R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behavior as $ t\rightarrow\infty$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 40 (1993), 17.

[25]

J. Serrin, On the uniqueness of compressible fluid motion,, Arch. Rational. Mech. Anal., 3 (1959), 271.

[26]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

show all references

References:
[1]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243. doi: 10.1016/j.matpur.2003.11.004.

[2]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Differ. Eqs., 190 (2003), 504. doi: 10.1016/S0022-0396(03)00015-9.

[3]

H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids,, Math. Methods Appl., 28 (2005), 1. doi: 10.1002/mma.545.

[4]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358. doi: 10.1007/PL00000976.

[5]

E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid,, Indiana Univ. Math. J., 53 (2004), 1705. doi: 10.1512/iumj.2004.53.2510.

[6]

E. Feireisl, Dynamics of Viscous Compressible Fluids,, Oxford University Press, (2004).

[7]

Z. H. Guo, H. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations,, Commun. Math. Phys., 309 (2012), 371. doi: 10.1007/s00220-011-1334-6.

[8]

D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169. doi: 10.2307/2000785.

[9]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225. doi: 10.1512/iumj.1992.41.41060.

[10]

D. Hoff, Global existence of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data,, J. Diff. Eqs., 120 (1995), 215. doi: 10.1006/jdeq.1995.1111.

[11]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rat. Mech. Anal., 132 (1995), 1. doi: 10.1007/BF00390346.

[12]

D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces,, Arch. Ration. Mech. Anal., 173 (2004), 297. doi: 10.1007/s00205-004-0318-5.

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887. doi: 10.1137/0151043.

[14]

X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549. doi: 10.1002/cpa.21382.

[15]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559. doi: 10.1007/PL00005543.

[16]

H. Kong, Global Existence of Spherically Symmetric Weak Solutions to the Free Boundary Value Problem of 3D Isentropic Compressible Navier-Stokes Equations,, Master thesis, (2014).

[17]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.

[18]

P. L. Lions, Mathematical Topics in Fluid Mechanics,, Vol. 2. Compressible models, (1998).

[19]

T. Luo, Z. P. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175. doi: 10.1137/S0036141097331044.

[20]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heatconductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.

[21]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France, 90 (1962), 487.

[22]

M. Okada, Free boundary problem for the equation of one dimensional motion of viscous gas,, Japan J. Appl. Math., 6 (1989), 161. doi: 10.1007/BF03167921.

[23]

M. Okada and T. Makino, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas,, Japan J. Appl. Math., 10 (1993), 219. doi: 10.1007/BF03167573.

[24]

R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behavior as $ t\rightarrow\infty$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 40 (1993), 17.

[25]

J. Serrin, On the uniqueness of compressible fluid motion,, Arch. Rational. Mech. Anal., 3 (1959), 271.

[26]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[1]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[2]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[3]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[4]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[5]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[6]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[7]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[8]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[9]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[10]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[11]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[12]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[13]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[14]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[15]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[16]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[17]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[18]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[19]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[20]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]